Cargando…
A comparison of ImageJ and machine learning based image analysis methods to measure cassava bacterial blight disease severity
BACKGROUND: Methods to accurately quantify disease severity are fundamental to plant pathogen interaction studies. Commonly used methods include visual scoring of disease symptoms, tracking pathogen growth in planta over time, and various assays that detect plant defense responses. Several image-bas...
Autores principales: | Elliott, Kiona, Berry, Jeffrey C., Kim, Hobin, Bart, Rebecca S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210806/ https://www.ncbi.nlm.nih.gov/pubmed/35729628 http://dx.doi.org/10.1186/s13007-022-00906-x |
Ejemplares similares
-
Improving cassava bacterial blight resistance by editing the epigenome
por: Veley, Kira M., et al.
Publicado: (2023) -
ImageJ2: ImageJ for the next generation of scientific image data
por: Rueden, Curtis T., et al.
Publicado: (2017) -
Efficacy of ImageJ in the assessment of apoptosis
por: Helmy, Iman M, et al.
Publicado: (2012) -
Evaluating local vegetation cover as a risk factor for malaria transmission: a new analytical approach using ImageJ
por: Ricotta, Emily E, et al.
Publicado: (2014) -
A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ
por: Schulze, Katja, et al.
Publicado: (2011)