Cargando…
The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia
Cognitive flexibility is a core component of executive function and supports the ability to ‘switch’ between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9211787/ https://www.ncbi.nlm.nih.gov/pubmed/35727365 http://dx.doi.org/10.1007/s00221-022-06394-8 |
Sumario: | Cognitive flexibility is a core component of executive function and supports the ability to ‘switch’ between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i.e., a non-standard task requiring a saccade mirror-symmetrical to veridical target) in predictable (i.e., AABB) and unpredictable (e.g., AABAB…) switching paradigms. Results have shown that reaction times (RTs) for a prosaccade preceded by an antisaccade (i.e., task-switch trial) are longer than when preceded by its same task-type (i.e., task-repeat trial), whereas RTs for antisaccade task-switch and task-repeat trials do not differ. The asymmetrical switch-cost has been attributed to an antisaccade task-set inertia that proactively delays a subsequent prosaccade (i.e., the unidirectional prosaccade switch-cost). A salient question arising from previous work is whether the antisaccade task-set inertia passively dissipates or persistently influences prosaccade RTs. Accordingly, participants completed separate AABB (i.e., A = prosaccade, B = antisaccade) task-switching conditions wherein the preparation interval for each trial was ‘short’ (1000–2000 ms; i.e., the timeframe used in previous work), ‘medium’ (3000–4000 ms) and ‘long’ (5000–6000 ms). Results demonstrated a reliable prosaccade switch-cost for each condition (ps < 0.02) and two one-sided test statistics indicated that switch cost magnitudes were within an equivalence boundary (ps < 0.05). Hence, null and equivalence tests demonstrate that an antisaccade task-set inertia does not passively dissipate and represents a temporally persistent feature of oculomotor control. |
---|