Cargando…
High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing
The identification of SARS-CoV-2 variants across the globe and their implications on the outspread of the pandemic, infection potential and resistance to vaccination, requires modification of the current diagnostic methods to map out viral mutations rapidly and reliably. Here, we demonstrate that in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212143/ https://www.ncbi.nlm.nih.gov/pubmed/35727806 http://dx.doi.org/10.1371/journal.pone.0253404 |
_version_ | 1784730514227200000 |
---|---|
author | Cohen-Aharonov, Lyora A. Rebibo-Sabbah, Annie Yaacov, Adar Granit, Roy Z. Strauss, Merav Colodner, Raul Cheshin, Ori Rosenberg, Shai Eavri, Ronen |
author_facet | Cohen-Aharonov, Lyora A. Rebibo-Sabbah, Annie Yaacov, Adar Granit, Roy Z. Strauss, Merav Colodner, Raul Cheshin, Ori Rosenberg, Shai Eavri, Ronen |
author_sort | Cohen-Aharonov, Lyora A. |
collection | PubMed |
description | The identification of SARS-CoV-2 variants across the globe and their implications on the outspread of the pandemic, infection potential and resistance to vaccination, requires modification of the current diagnostic methods to map out viral mutations rapidly and reliably. Here, we demonstrate that integrating DNA barcoding technology, sample pooling and Next Generation Sequencing (NGS) provide an applicable solution for large-population viral screening combined with specific variant analysis. Our solution allows high throughput testing by barcoding each sample, followed by pooling of test samples using a multi-step procedure. First, patient-specific barcodes are added to the primers used in a one-step RT-PCR reaction, amplifying three different viral genes and one human housekeeping gene (as internal control). Then, samples are pooled, purified and finally, the generated sequences are read using an Illumina NGS system to identify the positive samples with a sensitivity of 82.5% and a specificity of 97.3%. Using this solution, we were able to identify six known and one unknown SARS-CoV-2 variants in a screen of 960 samples out of which 258 (27%) were positive for the virus. Thus, our diagnostic solution integrates the benefits of large population and epidemiological screening together with sensitive and specific identification of positive samples including variant analysis at a single nucleotide resolution. |
format | Online Article Text |
id | pubmed-9212143 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92121432022-06-22 High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing Cohen-Aharonov, Lyora A. Rebibo-Sabbah, Annie Yaacov, Adar Granit, Roy Z. Strauss, Merav Colodner, Raul Cheshin, Ori Rosenberg, Shai Eavri, Ronen PLoS One Research Article The identification of SARS-CoV-2 variants across the globe and their implications on the outspread of the pandemic, infection potential and resistance to vaccination, requires modification of the current diagnostic methods to map out viral mutations rapidly and reliably. Here, we demonstrate that integrating DNA barcoding technology, sample pooling and Next Generation Sequencing (NGS) provide an applicable solution for large-population viral screening combined with specific variant analysis. Our solution allows high throughput testing by barcoding each sample, followed by pooling of test samples using a multi-step procedure. First, patient-specific barcodes are added to the primers used in a one-step RT-PCR reaction, amplifying three different viral genes and one human housekeeping gene (as internal control). Then, samples are pooled, purified and finally, the generated sequences are read using an Illumina NGS system to identify the positive samples with a sensitivity of 82.5% and a specificity of 97.3%. Using this solution, we were able to identify six known and one unknown SARS-CoV-2 variants in a screen of 960 samples out of which 258 (27%) were positive for the virus. Thus, our diagnostic solution integrates the benefits of large population and epidemiological screening together with sensitive and specific identification of positive samples including variant analysis at a single nucleotide resolution. Public Library of Science 2022-06-21 /pmc/articles/PMC9212143/ /pubmed/35727806 http://dx.doi.org/10.1371/journal.pone.0253404 Text en © 2022 Cohen-Aharonov et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Cohen-Aharonov, Lyora A. Rebibo-Sabbah, Annie Yaacov, Adar Granit, Roy Z. Strauss, Merav Colodner, Raul Cheshin, Ori Rosenberg, Shai Eavri, Ronen High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing |
title | High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing |
title_full | High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing |
title_fullStr | High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing |
title_full_unstemmed | High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing |
title_short | High throughput SARS-CoV-2 variant analysis using molecular barcodes coupled with next generation sequencing |
title_sort | high throughput sars-cov-2 variant analysis using molecular barcodes coupled with next generation sequencing |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212143/ https://www.ncbi.nlm.nih.gov/pubmed/35727806 http://dx.doi.org/10.1371/journal.pone.0253404 |
work_keys_str_mv | AT cohenaharonovlyoraa highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT rebibosabbahannie highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT yaacovadar highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT granitroyz highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT straussmerav highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT colodnerraul highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT cheshinori highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT rosenbergshai highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing AT eavrironen highthroughputsarscov2variantanalysisusingmolecularbarcodescoupledwithnextgenerationsequencing |