Cargando…
COVID-19 identification and analysis using CT scan images: Deep transfer learning-based approach
Due to this epidemic of COVID-19, the everyday lives, welfare, and wealth of a country are affected. Inefficiency, a lack of medical diagnostics, and inadequately trained healthcare professionals are among the most significant barriers to arresting the development of this disease. Blockchain offers...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212254/ http://dx.doi.org/10.1016/B978-0-323-90615-9.00011-6 |
Sumario: | Due to this epidemic of COVID-19, the everyday lives, welfare, and wealth of a country are affected. Inefficiency, a lack of medical diagnostics, and inadequately trained healthcare professionals are among the most significant barriers to arresting the development of this disease. Blockchain offers enormous promise for providing consistent and reliable real time and smart health facilities offsite. The infected patients with COVID-19 have shown they often have a lung infection upon arrival. It can be detected and analyzed using CT scan images. Unfortunately, though, it is time-consuming and liable to error. Thus, the assessment of chest CT scans must be automated. The proposed method uses transfer deep learning techniques to analyze CT scan images automatically. Transfer deep learning can improve the parameters of networks on huge databases, and pretrained networks can be used effectively on small datasets. We proposed a model built on VGGNet19, a convolutional neural network to classify individuals infected with coronavirus utilizing images of CT radiographs. We have used a globally accessible CT scan database that included 2500 CT pictures with COVID-19 infection and 2500 CT images without COVID-19 infection. An extensive experiment has been conducted using three deep learning methods such as VGG19, Xception Net, and CNN. Experiment findings indicate that the proposed model outperforms the other Xception Net and CNN models considerably. The results demonstrate that the proposed models have an accuracy of up to 95% and area under the receiver operating characteristic curve up to 95%. |
---|