Cargando…

Multi-branch fusion auxiliary learning for the detection of pneumonia from chest X-ray images()

Lung infections caused by bacteria and viruses are infectious and require timely screening and isolation, and different types of pneumonia require different treatment plans. Therefore, finding a rapid and accurate screening method for lung infections is critical. To achieve this goal, we proposed a...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jia, Qi, Jing, Chen, Wei, Nian, Yongjian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212341/
https://www.ncbi.nlm.nih.gov/pubmed/35779478
http://dx.doi.org/10.1016/j.compbiomed.2022.105732
Descripción
Sumario:Lung infections caused by bacteria and viruses are infectious and require timely screening and isolation, and different types of pneumonia require different treatment plans. Therefore, finding a rapid and accurate screening method for lung infections is critical. To achieve this goal, we proposed a multi-branch fusion auxiliary learning (MBFAL) method for pneumonia detection from chest X-ray (CXR) images. The MBFAL method was used to perform two tasks through a double-branch network. The first task was to recognize the absence of pneumonia (normal), COVID-19, other viral pneumonia and bacterial pneumonia from CXR images, and the second task was to recognize the three types of pneumonia from CXR images. The latter task was used to assist the learning of the former task to achieve a better recognition effect. In the process of auxiliary parameter updating, the feature maps of different branches were fused after sample screening through label information to enhance the model’s ability to recognize case of pneumonia without impacting its ability to recognize normal cases. Experiments show that an average classification accuracy of 95.61% is achieved using MBFAL. The single class accuracy for normal, COVID-19, other viral pneumonia and bacterial pneumonia was 98.70%, 99.10%, 96.60% and 96.80%, respectively, and the recall was 97.20%, 98.60%, 96.10% and 89.20%, respectively, using the MBFAL method. Compared with the baseline model and the model constructed using the above methods separately, better results for the rapid screening of pneumonia were achieved using MBFAL.