Cargando…
CovidConvLSTM: A fuzzy ensemble model for COVID-19 detection from chest X-rays [Image: see text]
The rapid outbreak of COVID-19 has affected the lives and livelihoods of a large part of the society. Hence, to confine the rapid spread of this virus, early detection of COVID-19 is extremely important. One of the most common ways of detecting COVID-19 is by using chest X-ray images. In the literat...
Autores principales: | Dey, Subhrajit, Bhattacharya, Rajdeep, Malakar, Samir, Schwenker, Friedhelm, Sarkar, Ram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212804/ https://www.ncbi.nlm.nih.gov/pubmed/35754941 http://dx.doi.org/10.1016/j.eswa.2022.117812 |
Ejemplares similares
-
Choquet fuzzy integral-based classifier ensemble technique for COVID-19 detection()
por: Dey, Subhrajit, et al.
Publicado: (2021) -
A Multivariate Spatiotemporal Model of COVID-19 Epidemic Using Ensemble of ConvLSTM Networks
por: Paul, Swarna Kamal, et al.
Publicado: (2020) -
TOPSIS aided ensemble of CNN models for screening COVID-19 in chest X-ray images
por: Pramanik, Rishav, et al.
Publicado: (2022) -
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
Exploring a Fuzzy Rule Inferred ConvLSTM for Discovering and Adjusting the Optimal Posture of Patients with a Smart Medical Bed
por: Costello, Francis Joseph, et al.
Publicado: (2021)