Cargando…

COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach

Recent literature has revealed a growing interest in methods for anticipating the demand for medical items and personnel at hospital, especially during turbulent scenarios such as the COVID-19 pandemic. In times like those, new variables appear and affect the once known demand behavior. This paper i...

Descripción completa

Detalles Bibliográficos
Autores principales: Borges, Dalton, Nascimento, Mariá C.V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9212961/
https://www.ncbi.nlm.nih.gov/pubmed/35755299
http://dx.doi.org/10.1016/j.asoc.2022.109181
Descripción
Sumario:Recent literature has revealed a growing interest in methods for anticipating the demand for medical items and personnel at hospital, especially during turbulent scenarios such as the COVID-19 pandemic. In times like those, new variables appear and affect the once known demand behavior. This paper investigates the hypothesis that the combined Prophet-LSTM method results in more accurate forecastings for COVID-19 hospital Intensive Care Units (ICUs) demand than both standalone models, Prophet and LSTM (Long Short-Term Memory Neural Network). We also compare the model to well-established demand forecasting benchmarks. The model is tested to a representative Brazilian municipality that serves as a medical reference to other cities within its region. In addition to traditional time series components, such as trend and seasonality, other variables such as the current number of daily COVID-19 cases, vaccination rates, non-pharmaceutical interventions, social isolation index, and regional hospital beds occupation are also used to explain the variations in COVID-19 hospital ICU demand. Results indicate that the proposed method produced Mean Average Errors (MAE) from 13% to 45% lower than well established statistical and machine learning forecasting models, including the standalone models.