Cargando…

Weather Conditions and COVID-19 Cases: Insights from the GCC Countries

The prediction of new COVID-19 cases is crucial for decision makers in many countries. Researchers are continually proposing new models to forecast the future tendencies of this pandemic, among which long short-term memory (LSTM) artificial neural networks have exhibited relative superiority compare...

Descripción completa

Detalles Bibliográficos
Autores principales: Abu-Abdoun, Dana I., Al-Shihabi, Sameh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213049/
http://dx.doi.org/10.1016/j.iswa.2022.200093
Descripción
Sumario:The prediction of new COVID-19 cases is crucial for decision makers in many countries. Researchers are continually proposing new models to forecast the future tendencies of this pandemic, among which long short-term memory (LSTM) artificial neural networks have exhibited relative superiority compared to other forecasting techniques. Moreover, the correlation between the spread of COVID-19 and exogenous factors, specifically weather features, has been explored to improve forecasting models. However, contradictory results have been reported regarding the incorporation of weather features into COVID-19 forecasting models. Therefore, this study compares uni-variate with bi- and multi-variate LSTM forecasting models for predicting COVID-19 cases, among which the latter models consider weather features. LSTM models were used to forecast COVID-19 cases in the six Gulf Cooperation Council countries. The root mean square error (RMSE) and coefficient of determination ([Formula: see text]) were employed to measure the accuracy of the LSTM forecasting models. Despite similar weather conditions, the weather features that exhibited the strongest correlation with COVID-19 cases differed among the six countries. Moreover, according to the statistical comparisons that were conducted, the improvements gained by including weather features were insignificant in terms of the RMSE values and marginally significant in terms of the [Formula: see text] values. Consequently, it is concluded that the uni-variate LSTM models were as good as the best bi- and multi-variate LSTM models; therefore, weather features need not be included. Furthermore, we could not identify a single weather feature that can consistently improve the forecasting accuracy.