Cargando…
Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques
Ischemic heart disease (IHD) causes discomfort or irritation in the chest. According to the World Health Organization, coronary heart disease is the major cause of mortality in Pakistan. Accurate model with the highest precision is necessary to avoid fatalities. Previously several models are tried w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213158/ https://www.ncbi.nlm.nih.gov/pubmed/35747725 http://dx.doi.org/10.1155/2022/3823350 |
_version_ | 1784730776891293696 |
---|---|
author | Shehzadi, Shumaila Hassan, Muhammad Abul Rizwan, Muhammad Kryvinska, Natalia Vincent, Karovič |
author_facet | Shehzadi, Shumaila Hassan, Muhammad Abul Rizwan, Muhammad Kryvinska, Natalia Vincent, Karovič |
author_sort | Shehzadi, Shumaila |
collection | PubMed |
description | Ischemic heart disease (IHD) causes discomfort or irritation in the chest. According to the World Health Organization, coronary heart disease is the major cause of mortality in Pakistan. Accurate model with the highest precision is necessary to avoid fatalities. Previously several models are tried with different attributes to enhance the detection accuracy but failed to do so. In this research study, an artificial approach to categorize the current stage of heart disease is carried out. Our model predicts a precise diagnosis of chronic diseases. The system is trained using a training dataset and then tested using a test dataset. Machine learning methods such as LR, NB, and RF are applied to forecast the development of a disease. Experimental outcomes of this research study have proven that our strategy has excelled other procedures with maximum accuracy of 99 percent for RF, 97 percent for NB, and 98 percent for LR. With such high accuracy, the number of deaths per year of ischemic heart disease will be slightly decreased. |
format | Online Article Text |
id | pubmed-9213158 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92131582022-06-22 Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques Shehzadi, Shumaila Hassan, Muhammad Abul Rizwan, Muhammad Kryvinska, Natalia Vincent, Karovič Comput Intell Neurosci Research Article Ischemic heart disease (IHD) causes discomfort or irritation in the chest. According to the World Health Organization, coronary heart disease is the major cause of mortality in Pakistan. Accurate model with the highest precision is necessary to avoid fatalities. Previously several models are tried with different attributes to enhance the detection accuracy but failed to do so. In this research study, an artificial approach to categorize the current stage of heart disease is carried out. Our model predicts a precise diagnosis of chronic diseases. The system is trained using a training dataset and then tested using a test dataset. Machine learning methods such as LR, NB, and RF are applied to forecast the development of a disease. Experimental outcomes of this research study have proven that our strategy has excelled other procedures with maximum accuracy of 99 percent for RF, 97 percent for NB, and 98 percent for LR. With such high accuracy, the number of deaths per year of ischemic heart disease will be slightly decreased. Hindawi 2022-06-14 /pmc/articles/PMC9213158/ /pubmed/35747725 http://dx.doi.org/10.1155/2022/3823350 Text en Copyright © 2022 Shumaila Shehzadi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Shehzadi, Shumaila Hassan, Muhammad Abul Rizwan, Muhammad Kryvinska, Natalia Vincent, Karovič Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques |
title | Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques |
title_full | Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques |
title_fullStr | Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques |
title_full_unstemmed | Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques |
title_short | Diagnosis of Chronic Ischemic Heart Disease Using Machine Learning Techniques |
title_sort | diagnosis of chronic ischemic heart disease using machine learning techniques |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213158/ https://www.ncbi.nlm.nih.gov/pubmed/35747725 http://dx.doi.org/10.1155/2022/3823350 |
work_keys_str_mv | AT shehzadishumaila diagnosisofchronicischemicheartdiseaseusingmachinelearningtechniques AT hassanmuhammadabul diagnosisofchronicischemicheartdiseaseusingmachinelearningtechniques AT rizwanmuhammad diagnosisofchronicischemicheartdiseaseusingmachinelearningtechniques AT kryvinskanatalia diagnosisofchronicischemicheartdiseaseusingmachinelearningtechniques AT vincentkarovic diagnosisofchronicischemicheartdiseaseusingmachinelearningtechniques |