Cargando…
An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples
The small size of labelled samples is one of the challenging problems in identifying early lung nodules from CT images using deep learning methods. Recent literature on the topic shows that deep convolutional generative adversarial network (DCGAN) has been used in medical data synthesis and gained s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213164/ https://www.ncbi.nlm.nih.gov/pubmed/35746964 http://dx.doi.org/10.1155/2022/2129303 |
_version_ | 1784730778369785856 |
---|---|
author | Wang, Xun Yu, Zhiyong Wang, Lisheng Zheng, Pan |
author_facet | Wang, Xun Yu, Zhiyong Wang, Lisheng Zheng, Pan |
author_sort | Wang, Xun |
collection | PubMed |
description | The small size of labelled samples is one of the challenging problems in identifying early lung nodules from CT images using deep learning methods. Recent literature on the topic shows that deep convolutional generative adversarial network (DCGAN) has been used in medical data synthesis and gained some success, but does not demonstrate satisfactory results in synthesizing CT images. It primarily suffers from the problem of model convergence and is prone to mode collapse. In this paper, we propose a generative adversarial network (GAN) model with prior knowledge to generate CT images of early lung nodules from a small-size of labelled samples, i.e., SLS-PriGAN. Particularly, a knowledge acquisition network and a sharpening network are designed for priori knowledge learning and acquisition, and then, a GAN model is developed to produce CT images of early lung nodules. To validate our method, a general fast R-CNN network is trained using the CT images generated by SLS-PriGAN. The experiment result shows that it achieved a recognizing accuracy of 91%, a recall rate of 81%, and F1 score of 0.85 in identifying clinic CT images of early lung nodules. This provides a promising way of identifying early lung nodules from CT images using deep learning with small-size labelled samples. |
format | Online Article Text |
id | pubmed-9213164 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92131642022-06-22 An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples Wang, Xun Yu, Zhiyong Wang, Lisheng Zheng, Pan Oxid Med Cell Longev Research Article The small size of labelled samples is one of the challenging problems in identifying early lung nodules from CT images using deep learning methods. Recent literature on the topic shows that deep convolutional generative adversarial network (DCGAN) has been used in medical data synthesis and gained some success, but does not demonstrate satisfactory results in synthesizing CT images. It primarily suffers from the problem of model convergence and is prone to mode collapse. In this paper, we propose a generative adversarial network (GAN) model with prior knowledge to generate CT images of early lung nodules from a small-size of labelled samples, i.e., SLS-PriGAN. Particularly, a knowledge acquisition network and a sharpening network are designed for priori knowledge learning and acquisition, and then, a GAN model is developed to produce CT images of early lung nodules. To validate our method, a general fast R-CNN network is trained using the CT images generated by SLS-PriGAN. The experiment result shows that it achieved a recognizing accuracy of 91%, a recall rate of 81%, and F1 score of 0.85 in identifying clinic CT images of early lung nodules. This provides a promising way of identifying early lung nodules from CT images using deep learning with small-size labelled samples. Hindawi 2022-06-14 /pmc/articles/PMC9213164/ /pubmed/35746964 http://dx.doi.org/10.1155/2022/2129303 Text en Copyright © 2022 Xun Wang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Xun Yu, Zhiyong Wang, Lisheng Zheng, Pan An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples |
title | An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples |
title_full | An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples |
title_fullStr | An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples |
title_full_unstemmed | An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples |
title_short | An Enhanced Priori Knowledge GAN for CT Images Generation of Early Lung Nodules with Small-Size Labelled Samples |
title_sort | enhanced priori knowledge gan for ct images generation of early lung nodules with small-size labelled samples |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213164/ https://www.ncbi.nlm.nih.gov/pubmed/35746964 http://dx.doi.org/10.1155/2022/2129303 |
work_keys_str_mv | AT wangxun anenhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples AT yuzhiyong anenhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples AT wanglisheng anenhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples AT zhengpan anenhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples AT wangxun enhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples AT yuzhiyong enhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples AT wanglisheng enhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples AT zhengpan enhancedprioriknowledgeganforctimagesgenerationofearlylungnoduleswithsmallsizelabelledsamples |