Cargando…
Machine Learning of Dose-Volume Histogram Parameters Predicting Overall Survival in Patients with Cervical Cancer Treated with Definitive Radiotherapy
PURPOSE: To analyze the effects of dosimetric parameters and clinical characteristics on overall survival (OS) by machine learning algorithms. METHODS AND MATERIALS: 128 patients with cervical cancer were treated with definitive pelvic radiotherapy with or without chemotherapy followed by image-guid...
Autores principales: | Xu, Zhiyuan, Yang, Li, Liu, Qin, Yu, Hao, Chen, Longhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213181/ https://www.ncbi.nlm.nih.gov/pubmed/35747125 http://dx.doi.org/10.1155/2022/2643376 |
Ejemplares similares
-
The Impact of Lymphopenia and Dosimetric Parameters on Overall Survival of Esophageal Cancer Patients Treated with Definitive Radiotherapy
por: Liu, Ming, et al.
Publicado: (2021) -
Gastrointestinal Toxicity Prediction Not Influenced by Rectal Contour or Dose-Volume Histogram Definition
por: Brand, Douglas H., et al.
Publicado: (2023) -
Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy
por: Grimm, Jimm, et al.
Publicado: (2011) -
A machine learning‐based survival prediction model of high grade glioma by integration of clinical and dose‐volume histogram parameters
por: Chen, Haiyan, et al.
Publicado: (2021) -
Modelling duodenum radiotherapy toxicity using cohort dose-volume-histogram data
por: Holyoake, Daniel L.P., et al.
Publicado: (2017)