Cargando…

Exploring the Interplay between Metabolism and Tumor Microenvironment Based on Four Major Metabolism Pathways in Colon Adenocarcinoma

Tumor metabolism plays a critical role in tumor progression. However, the interaction between metabolism and tumor microenvironment (TME) has not been comprehensively revealed in colon adenocarcinoma (COAD). We used unsupervised consensus clustering to establish three molecular subtypes (clusters) b...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiao, Xiaofang, Zhang, Guangmei, Xiao, Yajie, Cui, Xiaoli, Zhao, Zhikun, Wu, Dongfang, Liu, Xuefei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213191/
https://www.ncbi.nlm.nih.gov/pubmed/35747126
http://dx.doi.org/10.1155/2022/2159794
Descripción
Sumario:Tumor metabolism plays a critical role in tumor progression. However, the interaction between metabolism and tumor microenvironment (TME) has not been comprehensively revealed in colon adenocarcinoma (COAD). We used unsupervised consensus clustering to establish three molecular subtypes (clusters) based on the enrichment score of four major metabolism pathways in TCGA-COAD dataset. GSE17536 was used as a validation dataset. Single-cell RNA sequencing data (GSE161277) was employed to further verify the reliability of subtyping and characterize the correlation between metabolism and TME. Three clusters were identified and they performed distinct prognosis and molecular features. Clust3 had the worst overall survival and the highest enrichment score of glycolysis. 86 differentially expressed genes (DEGs) were identified, in which 11 DEGs were associated with favorable prognosis and 75 DEGs were associated with poor prognosis. Striking correlations were observed between hypoxia and glycolysis, clust3 and hypoxia, and clust3 and angiogenesis (P < 0.001).We constructed a molecular subtyping system which was effective and reliable for predicting COAD prognosis. The 86 identified key DEGs may be greatly involved in COAD progression, and they provide new perspectives and directions for further understanding the mechanism of metabolism in promoting aggressive phenotype by interacting with TME.