Cargando…
Deep learning reconstruction improves radiomics feature stability and discriminative power in abdominal CT imaging: a phantom study
OBJECTIVES: To compare image quality of deep learning reconstruction (AiCE) for radiomics feature extraction with filtered back projection (FBP), hybrid iterative reconstruction (AIDR 3D), and model-based iterative reconstruction (FIRST). METHODS: Effects of image reconstruction on radiomics feature...
Autores principales: | Michallek, Florian, Genske, Ulrich, Niehues, Stefan Markus, Hamm, Bernd, Jahnke, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213380/ https://www.ncbi.nlm.nih.gov/pubmed/35174400 http://dx.doi.org/10.1007/s00330-022-08592-y |
Ejemplares similares
-
Comparison of low-contrast detectability between uniform and anatomically realistic phantoms—influences on CT image quality assessment
por: Conzelmann, Juliane, et al.
Publicado: (2021) -
3D printing of anatomically realistic phantoms with detection tasks to assess the diagnostic performance of CT images
por: Ardila Pardo, Gracia Lana, et al.
Publicado: (2020) -
Task-based assessment of neck CT protocols using patient-mimicking phantoms—effects of protocol parameters on dose and diagnostic performance
por: Jahnke, Paul, et al.
Publicado: (2020) -
Phantom-based radiomics feature test–retest stability analysis on photon-counting detector CT
por: Hertel, Alexander, et al.
Publicado: (2023) -
Adaptive statistical iterative reconstruction (ASIR) affects CT radiomics quantification in primary colorectal cancer
por: Prezzi, Davide, et al.
Publicado: (2019)