Cargando…
A meta-analysis of the diagnostic test accuracy of CT-based radiomics for the prediction of COVID-19 severity
INTRODUCTION: According to the Chinese Health Commission guidelines, coronavirus disease 2019 (COVID-19) severity is classified as mild, moderate, severe, or critical. The mortality rate of COVID-19 is higher among patients with severe and critical diseases; therefore, early identification of COVID-...
Autores principales: | Kao, Yung-Shuo, Lin, Kun-Te |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Milan
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213649/ https://www.ncbi.nlm.nih.gov/pubmed/35731375 http://dx.doi.org/10.1007/s11547-022-01510-8 |
Ejemplares similares
-
Chest CT for detecting COVID-19: a systematic review and meta-analysis of diagnostic accuracy
por: Xu, Buyun, et al.
Publicado: (2020) -
Phantom-based radiomics feature test–retest stability analysis on photon-counting detector CT
por: Hertel, Alexander, et al.
Publicado: (2023) -
CT-based radiomics modeling for skull dysmorphology severity and surgical outcome prediction in children with isolated sagittal synostosis: a hypothesis-generating study
por: Calandrelli, Rosalinda, et al.
Publicado: (2022) -
Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT
por: Chen, Yong, et al.
Publicado: (2022) -
Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study
por: Huang, Luyu, et al.
Publicado: (2021)