Cargando…
Identification of a Recurrence Gene Signature for Ovarian Cancer Prognosis by Integrating Single-Cell RNA Sequencing and Bulk Expression Datasets
Ovarian cancer is one of the most common gynecological malignancies in women, with a poor prognosis and high mortality. With the expansion of single-cell RNA sequencing technologies, the inner biological mechanism involved in tumor recurrence should be explored at the single-cell level, and novel pr...
Autores principales: | Zhang, Yongjian, Huang, Wei, Chen, Dejia, Zhao, Yue, Sun, Fusheng, Wang, Zhiqiang, Lou, Ge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214038/ https://www.ncbi.nlm.nih.gov/pubmed/35754835 http://dx.doi.org/10.3389/fgene.2022.823082 |
Ejemplares similares
-
Identification of NAD(+) Metabolism-Derived Gene Signatures in Ovarian Cancer Prognosis and Immunotherapy
por: Lin, Liang, et al.
Publicado: (2022) -
Identification of a Gene Signature of Cancer-Associated Fibroblasts to Predict Prognosis in Ovarian Cancer
por: Zeng, Li, et al.
Publicado: (2022) -
Loss of SMURF2 expression enhances RACK1 stability and promotes ovarian cancer progression
por: Pi, Yanan, et al.
Publicado: (2023) -
Identification and Validation of a Tumor Microenvironment-Related Gene Signature in Hepatocellular Carcinoma Prognosis
por: Huang, Changjing, et al.
Publicado: (2021) -
Prognosis Prediction Through an Integrated Analysis of Single-Cell and Bulk RNA-Sequencing Data in Triple-Negative Breast Cancer
por: Wang, Xiangru, et al.
Publicado: (2022)