Cargando…
Comparison of Descriptor- and Fingerprint Sets in Machine Learning Models for ADME-Tox Targets
The screening of compounds for ADME-Tox targets plays an important role in drug design. QSPR models can increase the speed of these specific tasks, although the performance of the models highly depends on several factors, such as the applied molecular descriptors. In this study, a detailed compariso...
Autores principales: | Orosz, Álmos, Héberger, Károly, Rácz, Anita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214226/ https://www.ncbi.nlm.nih.gov/pubmed/35755260 http://dx.doi.org/10.3389/fchem.2022.852893 |
Ejemplares similares
-
Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR
por: Rácz, Anita, et al.
Publicado: (2019) -
Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics
por: Rácz, Anita, et al.
Publicado: (2019) -
Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints
por: Rácz, Anita, et al.
Publicado: (2018) -
Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?
por: Bajusz, Dávid, et al.
Publicado: (2015) -
Applications of the microphysiology systems database for experimental ADME-Tox and disease models
por: Schurdak, Mark, et al.
Publicado: (2020)