Cargando…
Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks
The spiking neural network (SNN) mimics the information-processing operation in the human brain. Directly applying backpropagation to the training of the SNN still has a performance gap compared with traditional deep neural networks. To address the problem, we propose a biologically plausible spatia...
Autores principales: | Shen, Guobin, Zhao, Dongcheng, Zeng, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214320/ https://www.ncbi.nlm.nih.gov/pubmed/35755868 http://dx.doi.org/10.1016/j.patter.2022.100522 |
Ejemplares similares
-
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Deep physical neural networks trained with backpropagation
por: Wright, Logan G., et al.
Publicado: (2022) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018) -
Backpropagation With Sparsity Regularization for Spiking Neural Network Learning
por: Yan, Yulong, et al.
Publicado: (2022)