Cargando…
Multi-input convolutional network for ultrafast simulation of field evolvement
There is a compelling need for the regression capability of mapping the initial field and applied conditions to the evolved field, e.g., given current flow field and fluid properties predicting next-step flow field. Such a capability can provide a maximum to full substitute of a physics-based model,...
Autores principales: | Wang, Zhuo, Yang, Wenhua, Xiang, Linyan, Wang, Xiao, Zhao, Yingjie, Xiao, Yaohong, Liu, Pengwei, Liu, Yucheng, Banu, Mihaela, Zikanov, Oleg, Chen, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214322/ https://www.ncbi.nlm.nih.gov/pubmed/35755874 http://dx.doi.org/10.1016/j.patter.2022.100494 |
Ejemplares similares
-
Essential computational fluid dynamics /
por: Zikanov, Oleg
Publicado: (2010) -
Self-evolving photonic crystals for ultrafast photonics
por: Inoue, Takuya, et al.
Publicado: (2023) -
An Evolving Hypergraph Convolutional Network for the Diagnosis of Alzheimer’s Disease
por: Wang, Xinlei, et al.
Publicado: (2022) -
General Image Fusion for an Arbitrary Number of Inputs Using Convolutional Neural Networks
por: Xiao, Yifan, et al.
Publicado: (2022) -
A Markovian model of evolving world input-output network
por: Moosavi, Vahid, et al.
Publicado: (2017)