Cargando…
Federated learning of molecular properties with graph neural networks in a heterogeneous setting
Chemistry research has both high material and computational costs to conduct experiments. Intuitions are interested in differing classes of molecules, creating heterogeneous data that cannot be easily joined by conventional methods. This work introduces federated heterogeneous molecular learning. Fe...
Autores principales: | Zhu, Wei, Luo, Jiebo, White, Andrew D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214329/ https://www.ncbi.nlm.nih.gov/pubmed/35755872 http://dx.doi.org/10.1016/j.patter.2022.100521 |
Ejemplares similares
-
Ensemble-GNN: federated ensemble learning with graph neural networks for disease module discovery and classification
por: Pfeifer, Bastian, et al.
Publicado: (2023) -
A federated graph neural network framework for privacy-preserving personalization
por: Wu, Chuhan, et al.
Publicado: (2022) -
Zero-shot learning of aerosol optical properties with graph neural networks
por: Lamb, K. D., et al.
Publicado: (2023) -
ESA-FedGNN: Efficient secure aggregation for federated graph neural networks
por: Liu, Yanjun, et al.
Publicado: (2023) -
Predicting chemical shifts with graph neural networks
por: Yang, Ziyue, et al.
Publicado: (2021)