Cargando…
Enzyme-instructed and mitochondria-targeting peptide self-assembly to efficiently induce immunogenic cell death
Immunogenic cell death (ICD) plays a major role in cancer immunotherapy by stimulating specific T cell responses and restoring the antitumor immune system. However, effective type II ICD inducers without biotoxicity are still very limited. Herein, a tentative drug- or photosensitizer-free strategy w...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214332/ https://www.ncbi.nlm.nih.gov/pubmed/35755291 http://dx.doi.org/10.1016/j.apsb.2021.07.005 |
Sumario: | Immunogenic cell death (ICD) plays a major role in cancer immunotherapy by stimulating specific T cell responses and restoring the antitumor immune system. However, effective type II ICD inducers without biotoxicity are still very limited. Herein, a tentative drug- or photosensitizer-free strategy was developed by employing enzymatic self-assembly of the peptide F-pY-T to induce mitochondrial oxidative stress in cancer cells. Upon dephosphorylation catalyzed by alkaline phosphatase overexpressed on cancer cells, the peptide F-pY-T self-assembled to form nanoparticles, which were subsequently internalized. These affected the morphology of mitochondria and induced serious reactive oxygen species production, causing the ICD characterized by the release of danger-associated molecular patterns (DAMPs). DAMPs enhanced specific immune responses by promoting the maturation of DCs and the intratumoral infiltration of tumor-specific T cells to eradicate tumor cells. The dramatic immunotherapeutic capacity could be enhanced further by combination therapy of F-pY-T and anti-PD-L1 agents without visible biotoxicity in the main organs. Thus, our results revealed an alternative strategy to induce efficient ICD by physically promoting mitochondrial oxidative stress. |
---|