Cargando…
Multi-domain integrative Swin transformer network for sparse-view tomographic reconstruction
Decreasing projection views to a lower X-ray radiation dose usually leads to severe streak artifacts. To improve image quality from sparse-view data, a multi-domain integrative Swin transformer network (MIST-net) was developed and is reported in this article. First, MIST-net incorporated lavish doma...
Autores principales: | Pan, Jiayi, Zhang, Heye, Wu, Weifei, Gao, Zhifan, Wu, Weiwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214338/ https://www.ncbi.nlm.nih.gov/pubmed/35755869 http://dx.doi.org/10.1016/j.patter.2022.100498 |
Ejemplares similares
-
S-Swin Transformer: simplified Swin Transformer model for offline handwritten Chinese character recognition
por: Dan, Yongping, et al.
Publicado: (2022) -
Swin-MFA: A Multi-Modal Fusion Attention Network Based on Swin-Transformer for Low-Light Image Human Segmentation
por: Yi, Xunpeng, et al.
Publicado: (2022) -
Sparse-View CT Reconstruction Based on a Hybrid Domain Model with Multi-Level Wavelet Transform
por: Bai, Jielin, et al.
Publicado: (2022) -
A Green Prospective for Learned Post-Processing in Sparse-View Tomographic Reconstruction
por: Morotti, Elena, et al.
Publicado: (2021) -
SwinOCSR: end-to-end optical chemical structure recognition using a Swin Transformer
por: Xu, Zhanpeng, et al.
Publicado: (2022)