Cargando…
DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
We described a challenge named “Diabetic Retinopathy (DR)—Grading and Image Quality Estimation Challenge” in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR image assessment and grading. The scientific community responded positively to the challenge, w...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214346/ https://www.ncbi.nlm.nih.gov/pubmed/35755875 http://dx.doi.org/10.1016/j.patter.2022.100512 |
_version_ | 1784730995220545536 |
---|---|
author | Liu, Ruhan Wang, Xiangning Wu, Qiang Dai, Ling Fang, Xi Yan, Tao Son, Jaemin Tang, Shiqi Li, Jiang Gao, Zijian Galdran, Adrian Poorneshwaran, J.M. Liu, Hao Wang, Jie Chen, Yerui Porwal, Prasanna Wei Tan, Gavin Siew Yang, Xiaokang Dai, Chao Song, Haitao Chen, Mingang Li, Huating Jia, Weiping Shen, Dinggang Sheng, Bin Zhang, Ping |
author_facet | Liu, Ruhan Wang, Xiangning Wu, Qiang Dai, Ling Fang, Xi Yan, Tao Son, Jaemin Tang, Shiqi Li, Jiang Gao, Zijian Galdran, Adrian Poorneshwaran, J.M. Liu, Hao Wang, Jie Chen, Yerui Porwal, Prasanna Wei Tan, Gavin Siew Yang, Xiaokang Dai, Chao Song, Haitao Chen, Mingang Li, Huating Jia, Weiping Shen, Dinggang Sheng, Bin Zhang, Ping |
author_sort | Liu, Ruhan |
collection | PubMed |
description | We described a challenge named “Diabetic Retinopathy (DR)—Grading and Image Quality Estimation Challenge” in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR image assessment and grading. The scientific community responded positively to the challenge, with 34 submissions from 574 registrations. In the challenge, we provided the DeepDRiD dataset containing 2,000 regular DR images (500 patients) and 256 ultra-widefield images (128 patients), both having DR quality and grading annotations. We discussed details of the top 3 algorithms in each sub-challenges. The weighted kappa for DR grading ranged from 0.93 to 0.82, and the accuracy for image quality evaluation ranged from 0.70 to 0.65. The results showed that image quality assessment can be used as a further target for exploration. We also have released the DeepDRiD dataset on GitHub to help develop automatic systems and improve human judgment in DR screening and diagnosis. |
format | Online Article Text |
id | pubmed-9214346 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92143462022-06-23 DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge Liu, Ruhan Wang, Xiangning Wu, Qiang Dai, Ling Fang, Xi Yan, Tao Son, Jaemin Tang, Shiqi Li, Jiang Gao, Zijian Galdran, Adrian Poorneshwaran, J.M. Liu, Hao Wang, Jie Chen, Yerui Porwal, Prasanna Wei Tan, Gavin Siew Yang, Xiaokang Dai, Chao Song, Haitao Chen, Mingang Li, Huating Jia, Weiping Shen, Dinggang Sheng, Bin Zhang, Ping Patterns (N Y) Descriptor We described a challenge named “Diabetic Retinopathy (DR)—Grading and Image Quality Estimation Challenge” in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR image assessment and grading. The scientific community responded positively to the challenge, with 34 submissions from 574 registrations. In the challenge, we provided the DeepDRiD dataset containing 2,000 regular DR images (500 patients) and 256 ultra-widefield images (128 patients), both having DR quality and grading annotations. We discussed details of the top 3 algorithms in each sub-challenges. The weighted kappa for DR grading ranged from 0.93 to 0.82, and the accuracy for image quality evaluation ranged from 0.70 to 0.65. The results showed that image quality assessment can be used as a further target for exploration. We also have released the DeepDRiD dataset on GitHub to help develop automatic systems and improve human judgment in DR screening and diagnosis. Elsevier 2022-05-20 /pmc/articles/PMC9214346/ /pubmed/35755875 http://dx.doi.org/10.1016/j.patter.2022.100512 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Descriptor Liu, Ruhan Wang, Xiangning Wu, Qiang Dai, Ling Fang, Xi Yan, Tao Son, Jaemin Tang, Shiqi Li, Jiang Gao, Zijian Galdran, Adrian Poorneshwaran, J.M. Liu, Hao Wang, Jie Chen, Yerui Porwal, Prasanna Wei Tan, Gavin Siew Yang, Xiaokang Dai, Chao Song, Haitao Chen, Mingang Li, Huating Jia, Weiping Shen, Dinggang Sheng, Bin Zhang, Ping DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge |
title | DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge |
title_full | DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge |
title_fullStr | DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge |
title_full_unstemmed | DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge |
title_short | DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge |
title_sort | deepdrid: diabetic retinopathy—grading and image quality estimation challenge |
topic | Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214346/ https://www.ncbi.nlm.nih.gov/pubmed/35755875 http://dx.doi.org/10.1016/j.patter.2022.100512 |
work_keys_str_mv | AT liuruhan deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT wangxiangning deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT wuqiang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT dailing deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT fangxi deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT yantao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT sonjaemin deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT tangshiqi deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT lijiang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT gaozijian deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT galdranadrian deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT poorneshwaranjm deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT liuhao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT wangjie deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT chenyerui deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT porwalprasanna deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT weitangavinsiew deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT yangxiaokang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT daichao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT songhaitao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT chenmingang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT lihuating deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT jiaweiping deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT shendinggang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT shengbin deepdriddiabeticretinopathygradingandimagequalityestimationchallenge AT zhangping deepdriddiabeticretinopathygradingandimagequalityestimationchallenge |