Cargando…

DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge

We described a challenge named “Diabetic Retinopathy (DR)—Grading and Image Quality Estimation Challenge” in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR image assessment and grading. The scientific community responded positively to the challenge, w...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ruhan, Wang, Xiangning, Wu, Qiang, Dai, Ling, Fang, Xi, Yan, Tao, Son, Jaemin, Tang, Shiqi, Li, Jiang, Gao, Zijian, Galdran, Adrian, Poorneshwaran, J.M., Liu, Hao, Wang, Jie, Chen, Yerui, Porwal, Prasanna, Wei Tan, Gavin Siew, Yang, Xiaokang, Dai, Chao, Song, Haitao, Chen, Mingang, Li, Huating, Jia, Weiping, Shen, Dinggang, Sheng, Bin, Zhang, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214346/
https://www.ncbi.nlm.nih.gov/pubmed/35755875
http://dx.doi.org/10.1016/j.patter.2022.100512
_version_ 1784730995220545536
author Liu, Ruhan
Wang, Xiangning
Wu, Qiang
Dai, Ling
Fang, Xi
Yan, Tao
Son, Jaemin
Tang, Shiqi
Li, Jiang
Gao, Zijian
Galdran, Adrian
Poorneshwaran, J.M.
Liu, Hao
Wang, Jie
Chen, Yerui
Porwal, Prasanna
Wei Tan, Gavin Siew
Yang, Xiaokang
Dai, Chao
Song, Haitao
Chen, Mingang
Li, Huating
Jia, Weiping
Shen, Dinggang
Sheng, Bin
Zhang, Ping
author_facet Liu, Ruhan
Wang, Xiangning
Wu, Qiang
Dai, Ling
Fang, Xi
Yan, Tao
Son, Jaemin
Tang, Shiqi
Li, Jiang
Gao, Zijian
Galdran, Adrian
Poorneshwaran, J.M.
Liu, Hao
Wang, Jie
Chen, Yerui
Porwal, Prasanna
Wei Tan, Gavin Siew
Yang, Xiaokang
Dai, Chao
Song, Haitao
Chen, Mingang
Li, Huating
Jia, Weiping
Shen, Dinggang
Sheng, Bin
Zhang, Ping
author_sort Liu, Ruhan
collection PubMed
description We described a challenge named “Diabetic Retinopathy (DR)—Grading and Image Quality Estimation Challenge” in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR image assessment and grading. The scientific community responded positively to the challenge, with 34 submissions from 574 registrations. In the challenge, we provided the DeepDRiD dataset containing 2,000 regular DR images (500 patients) and 256 ultra-widefield images (128 patients), both having DR quality and grading annotations. We discussed details of the top 3 algorithms in each sub-challenges. The weighted kappa for DR grading ranged from 0.93 to 0.82, and the accuracy for image quality evaluation ranged from 0.70 to 0.65. The results showed that image quality assessment can be used as a further target for exploration. We also have released the DeepDRiD dataset on GitHub to help develop automatic systems and improve human judgment in DR screening and diagnosis.
format Online
Article
Text
id pubmed-9214346
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-92143462022-06-23 DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge Liu, Ruhan Wang, Xiangning Wu, Qiang Dai, Ling Fang, Xi Yan, Tao Son, Jaemin Tang, Shiqi Li, Jiang Gao, Zijian Galdran, Adrian Poorneshwaran, J.M. Liu, Hao Wang, Jie Chen, Yerui Porwal, Prasanna Wei Tan, Gavin Siew Yang, Xiaokang Dai, Chao Song, Haitao Chen, Mingang Li, Huating Jia, Weiping Shen, Dinggang Sheng, Bin Zhang, Ping Patterns (N Y) Descriptor We described a challenge named “Diabetic Retinopathy (DR)—Grading and Image Quality Estimation Challenge” in conjunction with ISBI 2020 to hold three sub-challenges and develop deep learning models for DR image assessment and grading. The scientific community responded positively to the challenge, with 34 submissions from 574 registrations. In the challenge, we provided the DeepDRiD dataset containing 2,000 regular DR images (500 patients) and 256 ultra-widefield images (128 patients), both having DR quality and grading annotations. We discussed details of the top 3 algorithms in each sub-challenges. The weighted kappa for DR grading ranged from 0.93 to 0.82, and the accuracy for image quality evaluation ranged from 0.70 to 0.65. The results showed that image quality assessment can be used as a further target for exploration. We also have released the DeepDRiD dataset on GitHub to help develop automatic systems and improve human judgment in DR screening and diagnosis. Elsevier 2022-05-20 /pmc/articles/PMC9214346/ /pubmed/35755875 http://dx.doi.org/10.1016/j.patter.2022.100512 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Descriptor
Liu, Ruhan
Wang, Xiangning
Wu, Qiang
Dai, Ling
Fang, Xi
Yan, Tao
Son, Jaemin
Tang, Shiqi
Li, Jiang
Gao, Zijian
Galdran, Adrian
Poorneshwaran, J.M.
Liu, Hao
Wang, Jie
Chen, Yerui
Porwal, Prasanna
Wei Tan, Gavin Siew
Yang, Xiaokang
Dai, Chao
Song, Haitao
Chen, Mingang
Li, Huating
Jia, Weiping
Shen, Dinggang
Sheng, Bin
Zhang, Ping
DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
title DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
title_full DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
title_fullStr DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
title_full_unstemmed DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
title_short DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge
title_sort deepdrid: diabetic retinopathy—grading and image quality estimation challenge
topic Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214346/
https://www.ncbi.nlm.nih.gov/pubmed/35755875
http://dx.doi.org/10.1016/j.patter.2022.100512
work_keys_str_mv AT liuruhan deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT wangxiangning deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT wuqiang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT dailing deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT fangxi deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT yantao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT sonjaemin deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT tangshiqi deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT lijiang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT gaozijian deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT galdranadrian deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT poorneshwaranjm deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT liuhao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT wangjie deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT chenyerui deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT porwalprasanna deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT weitangavinsiew deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT yangxiaokang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT daichao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT songhaitao deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT chenmingang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT lihuating deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT jiaweiping deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT shendinggang deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT shengbin deepdriddiabeticretinopathygradingandimagequalityestimationchallenge
AT zhangping deepdriddiabeticretinopathygradingandimagequalityestimationchallenge