Cargando…

Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis

Proteasome 26S subunit, non-ATPase 14 (PSMD14) expression has been previously reported to be reduced in patients with pre-eclampsia (PE). The present study investigated the interaction network associated with the role of PSMD14 in PE. Reverse transcription-quantitative PCR (RT-qPCR) and western blot...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lingyun, Zhang, Shan, Chen, Fangrong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214602/
https://www.ncbi.nlm.nih.gov/pubmed/35761814
http://dx.doi.org/10.3892/etm.2022.11403
_version_ 1784731054282637312
author Zhang, Lingyun
Zhang, Shan
Chen, Fangrong
author_facet Zhang, Lingyun
Zhang, Shan
Chen, Fangrong
author_sort Zhang, Lingyun
collection PubMed
description Proteasome 26S subunit, non-ATPase 14 (PSMD14) expression has been previously reported to be reduced in patients with pre-eclampsia (PE). The present study investigated the interaction network associated with the role of PSMD14 in PE. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were performed to determine the transfection efficacy following plasmid-based gene transfer of PSMD14 into HTR-8/SVneo cells. Cell proliferation was measured using an MTT assay and 5-ethynyl-2'-deoxyuridine staining. The expression of proliferation-related proteins, including Ki67 and PCNA, was determined using western blotting. Wound healing and Transwell assays were performed to measure cell invasion and migration, whilst the expression of migration-related proteins, including MMP2 and MMP9, was measured using western blotting. The angiogenesis of HUVECs following treatment with the HTR-8/SVneo cell culture supernatant was examined using tube formation assay. Following overexpression of Hes-related family BHLH transcription factor with YRPW motif 1 (HEY1) by transfection of pcDNA3.1 expression vector containing full-length human HEY1 or knockdown by transfection of shRNA plasmids targeting HEY1, the expression of HEY1 and PSMD14 was detected using RT-qPCR and western blotting. The potential interaction between HEY1 and the PSMD14 promoter was examined using dual-luciferase reporter and chromatin immunoprecipitation assays. PSMD14 overexpression was found to promote the proliferation, invasion, migration of HTR-8/SVneo cells and the angiogenesis of HUVECs following treatment with the HTR-8/SVneo cell culture supernatant, accompanied by enhanced expression of proliferation and migration-related proteins. Furthermore, the transcription factor HEY1 activated the expression of PSMD14. Knocking down HEY1 expression partially reversed the promoting effects of PSMD14 overexpression on the proliferation, invasion, migration, angiogenesis, proliferation and migration-related protein expression in trophoblasts. In conclusion, HEY1-activated PSMD14 promoted trophoblast proliferation, invasion and angiogenesis. Therefore, HEY1 and PSMD14 can be potential targets for PE treatment.
format Online
Article
Text
id pubmed-9214602
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-92146022022-06-26 Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis Zhang, Lingyun Zhang, Shan Chen, Fangrong Exp Ther Med Articles Proteasome 26S subunit, non-ATPase 14 (PSMD14) expression has been previously reported to be reduced in patients with pre-eclampsia (PE). The present study investigated the interaction network associated with the role of PSMD14 in PE. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were performed to determine the transfection efficacy following plasmid-based gene transfer of PSMD14 into HTR-8/SVneo cells. Cell proliferation was measured using an MTT assay and 5-ethynyl-2'-deoxyuridine staining. The expression of proliferation-related proteins, including Ki67 and PCNA, was determined using western blotting. Wound healing and Transwell assays were performed to measure cell invasion and migration, whilst the expression of migration-related proteins, including MMP2 and MMP9, was measured using western blotting. The angiogenesis of HUVECs following treatment with the HTR-8/SVneo cell culture supernatant was examined using tube formation assay. Following overexpression of Hes-related family BHLH transcription factor with YRPW motif 1 (HEY1) by transfection of pcDNA3.1 expression vector containing full-length human HEY1 or knockdown by transfection of shRNA plasmids targeting HEY1, the expression of HEY1 and PSMD14 was detected using RT-qPCR and western blotting. The potential interaction between HEY1 and the PSMD14 promoter was examined using dual-luciferase reporter and chromatin immunoprecipitation assays. PSMD14 overexpression was found to promote the proliferation, invasion, migration of HTR-8/SVneo cells and the angiogenesis of HUVECs following treatment with the HTR-8/SVneo cell culture supernatant, accompanied by enhanced expression of proliferation and migration-related proteins. Furthermore, the transcription factor HEY1 activated the expression of PSMD14. Knocking down HEY1 expression partially reversed the promoting effects of PSMD14 overexpression on the proliferation, invasion, migration, angiogenesis, proliferation and migration-related protein expression in trophoblasts. In conclusion, HEY1-activated PSMD14 promoted trophoblast proliferation, invasion and angiogenesis. Therefore, HEY1 and PSMD14 can be potential targets for PE treatment. D.A. Spandidos 2022-05-31 /pmc/articles/PMC9214602/ /pubmed/35761814 http://dx.doi.org/10.3892/etm.2022.11403 Text en Copyright: © Zhang et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Zhang, Lingyun
Zhang, Shan
Chen, Fangrong
Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis
title Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis
title_full Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis
title_fullStr Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis
title_full_unstemmed Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis
title_short Hes-related family BHLH transcription factor with YRPW motif 1-activated proteasome 26S subunit, non-ATPase 14 regulates trophoblast function and endometrial angiogenesis
title_sort hes-related family bhlh transcription factor with yrpw motif 1-activated proteasome 26s subunit, non-atpase 14 regulates trophoblast function and endometrial angiogenesis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214602/
https://www.ncbi.nlm.nih.gov/pubmed/35761814
http://dx.doi.org/10.3892/etm.2022.11403
work_keys_str_mv AT zhanglingyun hesrelatedfamilybhlhtranscriptionfactorwithyrpwmotif1activatedproteasome26ssubunitnonatpase14regulatestrophoblastfunctionandendometrialangiogenesis
AT zhangshan hesrelatedfamilybhlhtranscriptionfactorwithyrpwmotif1activatedproteasome26ssubunitnonatpase14regulatestrophoblastfunctionandendometrialangiogenesis
AT chenfangrong hesrelatedfamilybhlhtranscriptionfactorwithyrpwmotif1activatedproteasome26ssubunitnonatpase14regulatestrophoblastfunctionandendometrialangiogenesis