Cargando…

Tetramethylammonium Cation: Directionality and Covalency in Its Interactions with Halide Ions

[Image: see text] The degree of interpenetration of the van der Waals crusts of two atoms, represented by a penetration index, is defined to better quantify the meaning of the nonbonding contact distances between two atoms, which should allow us to compare different atom pairs on the same footing. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Gil, Diego M., Echeverría, Jorge, Alvarez, Santiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214700/
https://www.ncbi.nlm.nih.gov/pubmed/35658462
http://dx.doi.org/10.1021/acs.inorgchem.2c00600
Descripción
Sumario:[Image: see text] The degree of interpenetration of the van der Waals crusts of two atoms, represented by a penetration index, is defined to better quantify the meaning of the nonbonding contact distances between two atoms, which should allow us to compare different atom pairs on the same footing. The structural trends of the intermolecular contacts between the tetramethylammonium cation (TMA) and halogen atoms are reviewed, and a computational study of model X···TMA ion pairs (X = F, Cl, Br, I, Au) is presented. The results disclose two energy minima, in each of which the anion simultaneously interacts with three hydrogen atoms. The bonding mechanisms in the two cases are discussed based on the results of the tools of the trade that provide a consistent picture in which a distribution of charges significantly varies not only around each different atom but is also strongly dependent on the distance to the central N atom. This behavior, together with some non-negligible covalent character of the interionic interaction, is not predicted from a single-molecular electrostatic potential map of the TMA cation.