Cargando…

A redox-enabled strategy for intramolecular hydroamination

Metal- or acid-catalyzed intramolecular hydroamination and Cope-type intramolecular hydroamination, a distinct concerted approach using hydroxylamines, typically suffer from significant synthetic limitations. Herein we report a process for intramolecular hydroamination that uses a redox-enabled stra...

Descripción completa

Detalles Bibliográficos
Autores principales: Allen, Meredith A., Ly, Huy M., O'Keefe, Geneviève F., Beauchemin, André M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214914/
https://www.ncbi.nlm.nih.gov/pubmed/35799811
http://dx.doi.org/10.1039/d2sc00481j
Descripción
Sumario:Metal- or acid-catalyzed intramolecular hydroamination and Cope-type intramolecular hydroamination, a distinct concerted approach using hydroxylamines, typically suffer from significant synthetic limitations. Herein we report a process for intramolecular hydroamination that uses a redox-enabled strategy relying on efficient in situ generation of hydroxylamines by oxidation, followed by Cope-type hydroamination, then reduction of the resulting pyrrolidine N-oxide. The steps are performed sequentially in a single pot, no catalyst is required, the conditions are mild, the process is highly functional group tolerant, and no chromatography is generally required for isolation. A robustness screen and a gram-scale example further support the practicality of this approach.