Cargando…
Predicting miRNA-disease associations based on graph attention network with multi-source information
BACKGROUND: There is a growing body of evidence from biological experiments suggesting that microRNAs (miRNAs) play a significant regulatory role in both diverse cellular activities and pathological processes. Exploring miRNA-disease associations not only can decipher pathogenic mechanisms but also...
Autores principales: | Li, Guanghui, Fang, Tao, Zhang, Yuejin, Liang, Cheng, Xiao, Qiu, Luo, Jiawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9215044/ https://www.ncbi.nlm.nih.gov/pubmed/35729531 http://dx.doi.org/10.1186/s12859-022-04796-7 |
Ejemplares similares
-
Using Graph Attention Network and Graph Convolutional Network to Explore Human CircRNA–Disease Associations Based on Multi-Source Data
por: Li, Guanghui, et al.
Publicado: (2022) -
Predicting miRNA-Disease Associations Based on Heterogeneous Graph Attention Networks
por: Ji, Cunmei, et al.
Publicado: (2021) -
Self-Weighted Multi-Kernel Multi-Label Learning for Potential miRNA-Disease Association Prediction
por: Pan, Zhenxia, et al.
Publicado: (2019) -
Identifying SM-miRNA associations based on layer attention graph convolutional network and matrix decomposition
por: Ni, Jie, et al.
Publicado: (2022) -
MiRNA-Drug Resistance Association Prediction Through the Attentive Multimodal Graph Convolutional Network
por: Niu, Yanqing, et al.
Publicado: (2022)