Cargando…
Discovery of nonlinear dynamical systems using a Runge–Kutta inspired dictionary-based sparse regression approach
In this work, we blend machine learning and dictionary-based learning with numerical analysis tools to discover differential equations from noisy and sparsely sampled measurement data of time-dependent processes. We use the fact that given a dictionary containing large candidate nonlinear functions,...
Autores principales: | Goyal, Pawan, Benner, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9215218/ https://www.ncbi.nlm.nih.gov/pubmed/35756880 http://dx.doi.org/10.1098/rspa.2021.0883 |
Ejemplares similares
-
Error behaviour of exponential Runge-Kutta methods
por: Kværnø, Anne
Publicado: (2005) -
Stochastic Bayesian Runge-Kutta method for dengue dynamic mapping
por: Mukhsar, et al.
Publicado: (2022) -
The numerical solution of differential-algebraic systems by Runge-Kutta methods
por: Hairer, Ernst, et al.
Publicado: (1989) -
Stable local-global stepsize control for Runge-Kutta methods
por: Kulikov, G Yu
Publicado: (1997) -
Generalized disks of contractivity for explicit and implicit runge-kutta methods
por: Dahlquist, Germund
Publicado: (1979)