Cargando…
A novel machine learning model to predict respiratory failure and invasive mechanical ventilation in critically ill patients suffering from COVID-19
In hypoxemic patients at risk for developing respiratory failure, the decision to initiate invasive mechanical ventilation (IMV) may be extremely difficult, even more so among patients suffering from COVID-19. Delayed recognition of respiratory failure may translate into poor outcomes, emphasizing t...
Autores principales: | Bendavid, Itai, Statlender, Liran, Shvartser, Leonid, Teppler, Shmuel, Azullay, Roy, Sapir, Rotem, Singer, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216294/ https://www.ncbi.nlm.nih.gov/pubmed/35732690 http://dx.doi.org/10.1038/s41598-022-14758-x |
Ejemplares similares
-
Using Machine-Learning to Assess the Prognostic Value of Early Enteral Feeding Intolerance in Critically Ill Patients: A Retrospective Study
por: Raphaeli, Orit, et al.
Publicado: (2023) -
Transient diabetes insipidus in critically ill COVID19 patients
por: Statlender, Liran, et al.
Publicado: (2023) -
Correlations between First 72 h Hypophosphatemia, Energy Deficit, Length of Ventilation, and Mortality—A Retrospective Cohort Study
por: Statlender, Liran, et al.
Publicado: (2022) -
Feasibility of achieving different protein targets using a hypocaloric high-protein enteral formula in critically ill patients
por: Singer, Pierre, et al.
Publicado: (2021) -
Effect of Combined Protein-Enriched Enteral Nutrition and Early Cycle Ergometry in Mechanically Ventilated Critically Ill Patients—A Pilot Study
por: Kagan, Ilya, et al.
Publicado: (2022)