Cargando…

Insighting isatin derivatives as potential antiviral agents against NSP3 of COVID-19

The world is now facing intolerable damage in all sectors of life because of the deadly COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2. The discovery and development of anti-SARS-CoV-2 drugs have become pragmatic in the time needed to fight against this pandemic. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Ilyas, Mubashar, Muhammad, Shabbir, Iqbal, Javed, Amin, Saniyah, Al-Sehemi, Abdullah G., Algarni, H., Alarfaji, Saleh S., Alshahrani, Mohammad Y., Ayub, Khurshid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Versita 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216297/
https://www.ncbi.nlm.nih.gov/pubmed/35757111
http://dx.doi.org/10.1007/s11696-022-02298-7
Descripción
Sumario:The world is now facing intolerable damage in all sectors of life because of the deadly COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2. The discovery and development of anti-SARS-CoV-2 drugs have become pragmatic in the time needed to fight against this pandemic. The non-structural protein 3 is essential for the replication of transcriptase complex (RTC) and may be regarded as a possible target against SARS-CoV-2. Here, we have used a comprehensive in silico technique to find potent drug molecules against the NSP3 receptor of SARS-CoV-2. Virtual screening of 150 Isatin derivatives taken from PubChem was performed based on their binding affinity estimated by docking simulations, resulting in the selection of 46 ligands having binding energy greater than −7.1 kcal/mol. Moreover, the molecular interactions of the nine best-docked ligands having a binding energy of ≥ −8.5 kcal/mol were analyzed. The molecular interactions showed that the three ligands (S5, S16, and S42) were stabilized by forming hydrogen bonds and other significant interactions. Molecular dynamic simulations were performed to mimic an in vitro protein-like aqueous environment and to check the stability of the best three ligands and NSP3 complexes in an aqueous environment. The binding energy of the S5, S16, and S42 systems obtained from the molecular mechanics Poisson–Boltzmann surface area also favor the system's stability. The MD and MM/PBSA results explore that S5, S16, and S42 are more stable and can be considered more potent drug candidates against COVID-19 disease. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11696-022-02298-7.