Cargando…

Sex differences in the effect of muscle fatigue on static postural control under different vision and task conditions

The main aim of this study was to compare the effects of ankle plantar flexors fatigue on postural control between healthy young adult males and females. The secondary aim was to determine the effects of vision on the fatigue-induced postural changes. Ten healthy young males and nine females were as...

Descripción completa

Detalles Bibliográficos
Autores principales: Jo, Donguk, Pannetier, Maya, Drouin, Sophie, Bassil, Sarah, Matte, Caroline, Bilodeau, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216616/
https://www.ncbi.nlm.nih.gov/pubmed/35731747
http://dx.doi.org/10.1371/journal.pone.0269705
Descripción
Sumario:The main aim of this study was to compare the effects of ankle plantar flexors fatigue on postural control between healthy young adult males and females. The secondary aim was to determine the effects of vision on the fatigue-induced postural changes. Ten healthy young males and nine females were asked to perform quiet standing (QS) and standing forward lean (FL) tasks with eyes open (EO) and closed (EC) before and immediately following exercise, and throughout a 15-min recovery period. A sustained isometric exercise of ankle plantar flexors was performed until participants were no longer able to maintain a target torque of 50% of maximal voluntary isometric contraction (MVIC). Mean anteroposterior (AP) and mediolateral (ML) positions of the center of pressure (COP), mean COP sway velocity, and 95% ellipse area of COP sway were measured. Ankle plantar flexors fatigue had significant effects on all dependent variables, except for sway area. A fatigue X sex interaction was found for sway velocity with the most challenging task condition (FL-EC), where males showed a significant increase in sway velocity up to 15 min following exercise, whereas females did not. Fatigue X vision interactions for AP position were also found, with the withdrawal of vision leading to a greater backward shift during recovery for both the QS (5 to 15 min) and FL (5 to 10 min) tasks. Our findings suggest the use of different postural control strategies with ankle fatigue between males and females, and also a contribution of vision to compensate for fatigue-induced instability that is not dependent on task difficulty.