Cargando…
Exploring Longitudinal Cough, Breath, and Voice Data for COVID-19 Progression Prediction via Sequential Deep Learning: Model Development and Validation
BACKGROUND: Recent work has shown the potential of using audio data (eg, cough, breathing, and voice) in the screening for COVID-19. However, these approaches only focus on one-off detection and detect the infection, given the current audio sample, but do not monitor disease progression in COVID-19....
Autores principales: | Dang, Ting, Han, Jing, Xia, Tong, Spathis, Dimitris, Bondareva, Erika, Siegele-Brown, Chloë, Chauhan, Jagmohan, Grammenos, Andreas, Hasthanasombat, Apinan, Floto, R Andres, Cicuta, Pietro, Mascolo, Cecilia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217153/ https://www.ncbi.nlm.nih.gov/pubmed/35653606 http://dx.doi.org/10.2196/37004 |
Ejemplares similares
-
Sounds of COVID-19: exploring realistic performance of audio-based digital testing
por: Han, Jing, et al.
Publicado: (2022) -
Evaluating Listening Performance for COVID-19 Detection by Clinicians and Machine Learning: Comparative Study
por: Han, Jing, et al.
Publicado: (2023) -
A summary of the ComParE COVID-19 challenges
por: Coppock, Harry, et al.
Publicado: (2023) -
Human-centred artificial intelligence for mobile health sensing: challenges and opportunities
por: Dang, Ting, et al.
Publicado: (2023) -
Detection of COVID-19 from voice, cough and breathing patterns: Dataset and preliminary results
por: Despotovic, Vladimir, et al.
Publicado: (2021)