Cargando…
Intelligent depression detection with asynchronous federated optimization
The growth of population and the various intensive life pressures everyday deepen the competitions among people. Tens of millions of people each year suffer from depression and only a fraction receives adequate treatment. The development of social networks such as Facebook, Twitter, Weibo, and QQ pr...
Autores principales: | Li, Jinli, Jiang, Ming, Qin, Yunbai, Zhang, Ran, Ling, Sai Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217731/ https://www.ncbi.nlm.nih.gov/pubmed/35761865 http://dx.doi.org/10.1007/s40747-022-00729-2 |
Ejemplares similares
-
Asynchronous Federated Learning for Improved Cardiovascular Disease Prediction Using Artificial Intelligence
por: Khan, Muhammad Amir, et al.
Publicado: (2023) -
Temporal Weighted Averaging for Asynchronous Federated Intrusion Detection Systems
por: Agrawal, Shaashwat, et al.
Publicado: (2021) -
Efficient Asynchronous Federated Learning for AUV Swarm
por: Meng, Zezhao, et al.
Publicado: (2022) -
Asynchronous Federated Learning System Based on Permissioned Blockchains
por: Wang, Rong, et al.
Publicado: (2022) -
Blockchain-Enabled Asynchronous Federated Learning in Edge Computing
por: Liu, Yinghui, et al.
Publicado: (2021)