Cargando…

The timing, duration and magnitude of the 8.2 ka event in global speleothem records

Abrupt events are a feature of many palaeoclimate records during the Holocene. The best example is the 8.2 ka event, which was triggered by a release of meltwater into the Labrador Sea and resulted in a weakening of poleward heat transport in the North Atlantic. We use an objective method to identif...

Descripción completa

Detalles Bibliográficos
Autores principales: Parker, Sarah E., Harrison, Sandy P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217811/
https://www.ncbi.nlm.nih.gov/pubmed/35732793
http://dx.doi.org/10.1038/s41598-022-14684-y
Descripción
Sumario:Abrupt events are a feature of many palaeoclimate records during the Holocene. The best example is the 8.2 ka event, which was triggered by a release of meltwater into the Labrador Sea and resulted in a weakening of poleward heat transport in the North Atlantic. We use an objective method to identify rapid climate events in globally distributed speleothem oxygen isotope records during the Holocene. We show that the 8.2 ka event can be identified in >70% of the speleothem records and is the most coherent signal of abrupt climate change during the last 12,000 years. The isotopic changes during the event are regionally homogenous: positive oxygen isotope anomalies are observed across Asia and negative anomalies are seen across Europe, the Mediterranean, South America and southern Africa. The magnitude of the isotopic excursions in Europe and Asia are statistically indistinguishable. There is no significant difference in the duration and timing of the 8.2 ka event between regions, or between the speleothem records and Greenland ice core records. Our study supports a rapid and global climate response to the 8.2 ka freshwater pulse into the North Atlantic, likely transmitted globally via atmospheric teleconnections.