Cargando…

Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?

BACKGROUND: Autonomic failure (AF) complicates Parkinson’s disease (PD) in one-third of cases, resulting in complex blood pressure (BP) abnormalities. While autonomic testing represents the diagnostic gold standard for AF, accessibility to this examination remains limited to a few tertiary referral...

Descripción completa

Detalles Bibliográficos
Autores principales: Vallelonga, Fabrizio, Sobrero, G., Merola, A., Valente, M., Giudici, M., Di Stefano, C., Milazzo, V., Burrello, J., Burrello, A., Veglio, F., Romagnolo, A., Maule, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217832/
https://www.ncbi.nlm.nih.gov/pubmed/35192033
http://dx.doi.org/10.1007/s00415-022-11020-2
_version_ 1784731743875497984
author Vallelonga, Fabrizio
Sobrero, G.
Merola, A.
Valente, M.
Giudici, M.
Di Stefano, C.
Milazzo, V.
Burrello, J.
Burrello, A.
Veglio, F.
Romagnolo, A.
Maule, S.
author_facet Vallelonga, Fabrizio
Sobrero, G.
Merola, A.
Valente, M.
Giudici, M.
Di Stefano, C.
Milazzo, V.
Burrello, J.
Burrello, A.
Veglio, F.
Romagnolo, A.
Maule, S.
author_sort Vallelonga, Fabrizio
collection PubMed
description BACKGROUND: Autonomic failure (AF) complicates Parkinson’s disease (PD) in one-third of cases, resulting in complex blood pressure (BP) abnormalities. While autonomic testing represents the diagnostic gold standard for AF, accessibility to this examination remains limited to a few tertiary referral centers. OBJECTIVE: The present study sought to investigate the accuracy of a machine learning algorithm applied to 24-h ambulatory BP monitoring (ABPM) as a tool to facilitate the diagnosis of AF in patients with PD. METHODS: Consecutive PD patients naïve to vasoactive medications underwent 24 h-ABPM and autonomic testing. The diagnostic accuracy of a Linear Discriminant Analysis (LDA) model exploiting ABPM parameters was compared to autonomic testing (as per a modified version of the Composite Autonomic Symptom Score not including the sudomotor score) in the diagnosis of AF. RESULTS: The study population consisted of n = 80 PD patients (33% female) with a mean age of 64 ± 10 years old and disease duration of 6.2 ± 4 years. The prevalence of AF at the autonomic testing was 36%. The LDA model showed 91.3% accuracy (98.0% specificity, 79.3% sensitivity) in predicting AF, significantly higher than any of the ABPM variables considered individually (hypotensive episodes = 82%; reverse dipping = 79%; awakening hypotension = 74%). CONCLUSION: LDA model based on 24-h ABPM parameters can effectively predict AF, allowing greater accessibility to an accurate and easy to administer test for AF. Potential applications range from systematic AF screening to monitoring and treating blood pressure dysregulation caused by PD and other neurodegenerative disorders.
format Online
Article
Text
id pubmed-9217832
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-92178322022-06-24 Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure? Vallelonga, Fabrizio Sobrero, G. Merola, A. Valente, M. Giudici, M. Di Stefano, C. Milazzo, V. Burrello, J. Burrello, A. Veglio, F. Romagnolo, A. Maule, S. J Neurol Original Communication BACKGROUND: Autonomic failure (AF) complicates Parkinson’s disease (PD) in one-third of cases, resulting in complex blood pressure (BP) abnormalities. While autonomic testing represents the diagnostic gold standard for AF, accessibility to this examination remains limited to a few tertiary referral centers. OBJECTIVE: The present study sought to investigate the accuracy of a machine learning algorithm applied to 24-h ambulatory BP monitoring (ABPM) as a tool to facilitate the diagnosis of AF in patients with PD. METHODS: Consecutive PD patients naïve to vasoactive medications underwent 24 h-ABPM and autonomic testing. The diagnostic accuracy of a Linear Discriminant Analysis (LDA) model exploiting ABPM parameters was compared to autonomic testing (as per a modified version of the Composite Autonomic Symptom Score not including the sudomotor score) in the diagnosis of AF. RESULTS: The study population consisted of n = 80 PD patients (33% female) with a mean age of 64 ± 10 years old and disease duration of 6.2 ± 4 years. The prevalence of AF at the autonomic testing was 36%. The LDA model showed 91.3% accuracy (98.0% specificity, 79.3% sensitivity) in predicting AF, significantly higher than any of the ABPM variables considered individually (hypotensive episodes = 82%; reverse dipping = 79%; awakening hypotension = 74%). CONCLUSION: LDA model based on 24-h ABPM parameters can effectively predict AF, allowing greater accessibility to an accurate and easy to administer test for AF. Potential applications range from systematic AF screening to monitoring and treating blood pressure dysregulation caused by PD and other neurodegenerative disorders. Springer Berlin Heidelberg 2022-02-22 2022 /pmc/articles/PMC9217832/ /pubmed/35192033 http://dx.doi.org/10.1007/s00415-022-11020-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Communication
Vallelonga, Fabrizio
Sobrero, G.
Merola, A.
Valente, M.
Giudici, M.
Di Stefano, C.
Milazzo, V.
Burrello, J.
Burrello, A.
Veglio, F.
Romagnolo, A.
Maule, S.
Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?
title Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?
title_full Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?
title_fullStr Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?
title_full_unstemmed Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?
title_short Machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?
title_sort machine learning applied to ambulatory blood pressure monitoring: a new tool to diagnose autonomic failure?
topic Original Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217832/
https://www.ncbi.nlm.nih.gov/pubmed/35192033
http://dx.doi.org/10.1007/s00415-022-11020-2
work_keys_str_mv AT vallelongafabrizio machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT sobrerog machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT merolaa machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT valentem machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT giudicim machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT distefanoc machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT milazzov machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT burrelloj machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT burrelloa machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT vegliof machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT romagnoloa machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure
AT maules machinelearningappliedtoambulatorybloodpressuremonitoringanewtooltodiagnoseautonomicfailure