Cargando…
Machine learning methods to predict attrition in a population-based cohort of very preterm infants
The timely identification of cohort participants at higher risk for attrition is important to earlier interventions and efficient use of research resources. Machine learning may have advantages over the conventional approaches to improve discrimination by analysing complex interactions among predict...
Autores principales: | Teixeira, Raquel, Rodrigues, Carina, Moreira, Carla, Barros, Henrique, Camacho, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217966/ https://www.ncbi.nlm.nih.gov/pubmed/35732850 http://dx.doi.org/10.1038/s41598-022-13946-z |
Ejemplares similares
-
Completeness of Retention Data and Determinants of Attrition in Birth Cohorts of Very Preterm Infants: A Systematic Review
por: Teixeira, Raquel, et al.
Publicado: (2021) -
Machine learning for prediction of bronchopulmonary dysplasia-free survival among very preterm infants
por: Leigh, Rebekah M., et al.
Publicado: (2022) -
Never‐breastfed children face a higher risk of suboptimal cognition at 2 years of corrected age: A multinational cohort of very preterm children
por: Rodrigues, Carina, et al.
Publicado: (2022) -
Neonatal Morbidity and Mortality in Advanced Aged Mothers—Maternal Age Is Not an Independent Risk Factor for Infants Born Very Preterm
por: Nourkami-Tutdibi, Nasenien, et al.
Publicado: (2021) -
Comparison of Multivariable Logistic Regression and Machine Learning Models for Predicting Bronchopulmonary Dysplasia or Death in Very Preterm Infants
por: Khurshid, Faiza, et al.
Publicado: (2021)