Cargando…
Large-scale investigation of deep learning approaches for ventilated lung segmentation using multi-nuclear hyperpolarized gas MRI
Respiratory diseases are leading causes of mortality and morbidity worldwide. Pulmonary imaging is an essential component of the diagnosis, treatment planning, monitoring, and treatment assessment of respiratory diseases. Insights into numerous pulmonary pathologies can be gleaned from functional lu...
Autores principales: | Astley, Joshua R., Biancardi, Alberto M., Hughes, Paul J. C., Marshall, Helen, Smith, Laurie J., Collier, Guilhem J., Eaden, James A., Weatherley, Nicholas D., Hatton, Matthew Q., Wild, Jim M., Tahir, Bilal A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217976/ https://www.ncbi.nlm.nih.gov/pubmed/35732795 http://dx.doi.org/10.1038/s41598-022-14672-2 |
Ejemplares similares
-
PhysVENeT: a physiologically-informed deep learning-based framework for the synthesis of 3D hyperpolarized gas MRI ventilation
por: Astley, Joshua R., et al.
Publicado: (2023) -
Whole lung morphometry with 3D multiple b‐value hyperpolarized gas MRI and compressed sensing
por: Chan, Ho‐Fung, et al.
Publicado: (2016) -
Xenon ventilation MRI in difficult asthma: initial experience in a clinical setting
por: Mussell, Grace T., et al.
Publicado: (2021) -
Lung MRI with hyperpolarised gases: current & future clinical perspectives
por: Stewart, Neil J, et al.
Publicado: (2022) -
Hyperpolarised xenon-129 diffusion-weighted magnetic resonance imaging for assessing lung microstructure in idiopathic pulmonary fibrosis
por: Eaden, James A., et al.
Publicado: (2023)