Cargando…

Recent Advances in Layered Metal‐Oxide Cathodes for Application in Potassium‐Ion Batteries

To meet future energy demands, currently, dominant lithium‐ion batteries (LIBs) must be supported by abundant and cost‐effective alternative battery materials. Potassium‐ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation...

Descripción completa

Detalles Bibliográficos
Autores principales: Nathan, Muthu Gnana Theresa, Yu, Hakgyoon, Kim, Guk‐Tae, Kim, Jin‐Hee, Cho, Jung Sang, Kim, Jeha, Kim, Jae‐Kwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218662/
https://www.ncbi.nlm.nih.gov/pubmed/35478355
http://dx.doi.org/10.1002/advs.202105882
Descripción
Sumario:To meet future energy demands, currently, dominant lithium‐ion batteries (LIBs) must be supported by abundant and cost‐effective alternative battery materials. Potassium‐ion batteries (KIBs) are promising alternatives to LIBs because KIB materials are abundant and because KIBs exhibit intercalation chemistry like LIBs and comparable energy densities. In pursuit of superior batteries, designing and developing highly efficient electrode materials are indispensable for meeting the requirements of large‐scale energy storage applications. Despite using graphite anodes in KIBs instead of in sodium‐ion batteries (NIBs), developing suitable KIB cathodes is extremely challenging and has attracted considerable research attention. Among the various cathode materials, layered metal oxides have attracted considerable interest owing to their tunable stoichiometry, high specific capacity, and structural stability. Therefore, the recent progress in layered metal‐oxide cathodes is comprehensively reviewed for application to KIBs and the fundamental material design, classification, phase transitions, preparation techniques, and corresponding electrochemical performance of KIBs are presented. Furthermore, the challenges and opportunities associated with developing layered oxide cathode materials are presented for practical application to KIBs.