Cargando…

Fast Location and Recognition of Green Apple Based on RGB-D Image

In the process of green apple harvesting or yield estimation, affected by the factors, such as fruit color, light, and orchard environment, the accurate recognition and fast location of the target fruit brings tremendous challenges to the vision system. In this article, we improve a density peak clu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Meili, Xu, Liancheng, Luo, Rong, Lu, Yuqi, Jia, Weikuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218757/
https://www.ncbi.nlm.nih.gov/pubmed/35755709
http://dx.doi.org/10.3389/fpls.2022.864458
Descripción
Sumario:In the process of green apple harvesting or yield estimation, affected by the factors, such as fruit color, light, and orchard environment, the accurate recognition and fast location of the target fruit brings tremendous challenges to the vision system. In this article, we improve a density peak cluster segmentation algorithm for RGB images with the help of a gradient field of depth images to locate and recognize target fruit. Specifically, the image depth information is adopted to analyze the gradient field of the target image. The vorticity center and two-dimensional plane projection are constructed to realize the accurate center location. Next, an optimized density peak clustering algorithm is applied to segment the target image, where a kernel density estimation is utilized to optimize the segmentation algorithm, and a double sort algorithm is applied to efficiently obtain the accurate segmentation area of the target image. Finally, the segmentation area with the circle center is the target fruit area, and the maximum value method is employed to determine the radius. The above two results are merged to achieve the contour fitting of the target fruits. The novel method is designed without iteration, classifier, and several samples, which has greatly improved operating efficiency. The experimental results show that the presented method significantly improves accuracy and efficiency. Meanwhile, this new method deserves further promotion.