Cargando…
An EMD-Based Adaptive Client Selection Algorithm for Federated Learning in Heterogeneous Data Scenarios
Federated learning is a distributed machine learning framework that enables distributed nodes with computation and storage capabilities to train a global model while keeping distributed-stored data locally. This process can promote the efficiency of modeling while preserving data privacy. Therefore,...
Autores principales: | Chen, Aiguo, Fu, Yang, Sha, Zexin, Lu, Guoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218865/ https://www.ncbi.nlm.nih.gov/pubmed/35755701 http://dx.doi.org/10.3389/fpls.2022.908814 |
Ejemplares similares
-
DWFed: A statistical- heterogeneity-based dynamic weighted model aggregation algorithm for federated learning
por: Chen, Aiguo, et al.
Publicado: (2022) -
Trust-Augmented Deep Reinforcement Learning for Federated Learning Client Selection
por: Rjoub, Gaith, et al.
Publicado: (2022) -
Adaptive Diversity of Beech Seedlings Under Climate Change Scenarios
por: Varsamis, Georgios, et al.
Publicado: (2019) -
FedDdrl: Federated Double Deep Reinforcement Learning for Heterogeneous IoT with Adaptive Early Client Termination and Local Epoch Adjustment
por: Wong, Yi Jie, et al.
Publicado: (2023) -
EMD: an ensemble algorithm for discovering regulatory motifs in DNA sequences
por: Hu, Jianjun, et al.
Publicado: (2006)