Cargando…
Application of Machine Learning Methods in Modeling the Loss of Circulation Rate while Drilling Operation
[Image: see text] Fluid losses into formations are a common operational issue that is frequently encountered when drilling across naturally or induced fractured formations. This could pose significant operational risks, such as well control, stuck pipe, and wellbore instability, which, in turn, lead...
Autores principales: | Alsaihati, Ahmed, Abughaban, Mahmoud, Elkatatny, Salaheldin, Shehri, Dhafer Al |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218981/ https://www.ncbi.nlm.nih.gov/pubmed/35755391 http://dx.doi.org/10.1021/acsomega.2c00970 |
Ejemplares similares
-
Applications of Artificial Intelligence for Static Poisson's Ratio Prediction While Drilling
por: Ahmed, Ashraf, et al.
Publicado: (2021) -
Intelligent Prediction for Rock Porosity While Drilling Complex Lithology in Real Time
por: Gamal, Hany, et al.
Publicado: (2021) -
Machine Learning Solution for Predicting Vibrations
while Drilling the Curve Section
por: Saadeldin, Ramy, et al.
Publicado: (2023) -
Applications of
Different Classification Machine Learning
Techniques to Predict Formation Tops and Lithology While Drilling
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2023) -
Machine Learning Models for Equivalent Circulating
Density Prediction from Drilling Data
por: Gamal, Hany, et al.
Publicado: (2021)