Cargando…
Discovering Superhard B–N–O Compounds by Iterative Machine Learning and Evolutionary Structure Predictions
[Image: see text] We searched for new superhard B–N–O compounds with an iterative machine learning (ML) procedure, where ML models are trained using sample crystal structures from an evolutionary algorithm. We first used cohesive energy to evaluate the thermodynamic stability of varying B(x)N(y)O(z)...
Autores principales: | Chen, Wei-Chih, Vohra, Yogesh K., Chen, Cheng-Chien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219054/ https://www.ncbi.nlm.nih.gov/pubmed/35755336 http://dx.doi.org/10.1021/acsomega.2c01818 |
Ejemplares similares
-
Experimental and Computational Studies on Superhard Material Rhenium Diboride under Ultrahigh Pressures
por: Burrage, Kaleb C., et al.
Publicado: (2020) -
Computational Predictions and Microwave Plasma Synthesis of Superhard Boron-Carbon Materials
por: Baker, Paul A., et al.
Publicado: (2018) -
Prediction of a new ground state of superhard compound B(6)O at ambient conditions
por: Dong, Huafeng, et al.
Publicado: (2016) -
Superhard Boron-Rich Boron Carbide with Controlled Degree of Crystallinity
por: Chakrabarty, Kallol, et al.
Publicado: (2020) -
Understanding the nature of “superhard graphite”
por: Boulfelfel, Salah Eddine, et al.
Publicado: (2012)