Cargando…
Machine-learning algorithms based on personalized pathways for a novel predictive model for the diagnosis of hepatocellular carcinoma
BACKGROUND: At present, the diagnostic ability of hepatocellular carcinoma (HCC) based on serum alpha-fetoprotein level is limited. Finding markers that can effectively distinguish cancer and non-cancerous tissues is important for improving the diagnostic efficiency of HCC. RESULTS: In this study, w...
Autores principales: | Cheng, Binglin, Zhou, Peitao, Chen, Yuhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219178/ https://www.ncbi.nlm.nih.gov/pubmed/35739471 http://dx.doi.org/10.1186/s12859-022-04805-9 |
Ejemplares similares
-
Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma
por: Sato, Masaya, et al.
Publicado: (2019) -
A novel machine learning algorithm to predict disease free survival after resection of hepatocellular carcinoma
por: Schoenberg, Markus Bo, et al.
Publicado: (2020) -
Identification of RNA binding protein interacting with circular RNA and hub candidate network for hepatocellular carcinoma
por: Cheng, Binglin, et al.
Publicado: (2021) -
Construction and analysis of macrophage infiltration related circRNA-miRNA-mRNA regulatory networks in hepatocellular carcinoma
por: Chen, Yuhan, et al.
Publicado: (2020) -
Construction of a circRNA-miRNA-mRNA Network Related to Macrophage Infiltration in Hepatocellular Carcinoma
por: Zhou, Peitao, et al.
Publicado: (2020)