Cargando…

Change of Gut Microbiota in PRRSV-Resistant Pigs and PRRSV-Susceptible Pigs from Tongcheng Pigs and Large White Pigs Crossed Population upon PRRSV Infection

SIMPLE SUMMARY: The gut microbiota could directly induce immune responses and affect the health of the host. In this study, we assessed changes in the gut microbiota of resistant segregated phenotypic pigs under Porcine Reproductive and Respiratory Syndrome Virus exposure. The results showed that th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tengfei, Guan, Kaifeng, Su, Qiuju, Wang, Xiaotong, Yan, Zengqiang, Kuang, Kailin, Wang, Yuan, Zhang, Qingde, Zhou, Xiang, Liu, Bang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219425/
https://www.ncbi.nlm.nih.gov/pubmed/35739841
http://dx.doi.org/10.3390/ani12121504
Descripción
Sumario:SIMPLE SUMMARY: The gut microbiota could directly induce immune responses and affect the health of the host. In this study, we assessed changes in the gut microbiota of resistant segregated phenotypic pigs under Porcine Reproductive and Respiratory Syndrome Virus exposure. The results showed that the resistance of pigs was related to the composition of gut microbiota. The quantity and relative abundance of probiotics in resistant individuals positively affected host immunity and growth performance, whereas high levels of pathogenic bacteria in susceptible individuals were associated with poorer clinical outcomes. The results of this study suggest that gut microbiota may serve as an effective probiotic resource to provide new methods for PRRS prevention and treatment. ABSTRACT: Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the serious infectious diseases that threatens the swine industry. Increasing evidence shows that gut microbiota plays an important role in regulating host immune responses to PRRS virus (PRRSV). The aim of this study was to investigate gut microbiota difference between PRRSV-resistant pigs and PRRSV-suspectable pigs derived from a Tongcheng pigs and Large White pigs crossed population. PRRSV infection induces an increase in the abundance and diversity of gut microbiota. Correlation analysis showed that 36 genera were correlated with viral loads or weight gain after PRRSV infection. Prevotellaceae-NK3B31-group, Christensenellaceae-R7-group, and Parabacteroides were highly correlated with both viral load and weight gain. Notably, the diversity and abundance of beneficial bacteria such as Prevotellaceae-NK3B31-group was high in resistant pigs, and the diversity and abundance of pathogenic bacteria such as Campylobacter and Desulfovibrio were high in susceptible pigs. Gut microbiota were significantly associated with immune function and growth performance, suggesting that these genera might be related to viremia, clinical symptoms, and disease resistance. Altogether, this study revealed the correlation of gut microbiota with PRRSV infection and gut microbiota interventions may provide an effective prevention against PRRSV infection.