Cargando…
A Comparison of Computer-Aided Diagnosis Schemes Optimized Using Radiomics and Deep Transfer Learning Methods
Objective: Radiomics and deep transfer learning are two popular technologies used to develop computer-aided detection and diagnosis (CAD) schemes of medical images. This study aims to investigate and to compare the advantages and the potential limitations of applying these two technologies in develo...
Autores principales: | Danala, Gopichandh, Maryada, Sai Kiran, Islam, Warid, Faiz, Rowzat, Jones, Meredith, Qiu, Yuchen, Zheng, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219621/ https://www.ncbi.nlm.nih.gov/pubmed/35735499 http://dx.doi.org/10.3390/bioengineering9060256 |
Ejemplares similares
-
Improving Performance of Breast Lesion Classification Using a ResNet50 Model Optimized with a Novel Attention Mechanism
por: Islam, Warid, et al.
Publicado: (2022) -
Developing global image feature analysis models to predict cancer risk and prognosis
por: Zheng, Bin, et al.
Publicado: (2019) -
Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms
por: Heidari, Morteza, et al.
Publicado: (2020) -
Developing a Quantitative Ultrasound Image Feature Analysis Scheme to Assess Tumor Treatment Efficacy Using a Mouse Model
por: Mirniaharikandehei, Seyedehnafiseh, et al.
Publicado: (2019) -
Applying artificial intelligence technology to assist with breast cancer diagnosis and prognosis prediction
por: Jones, Meredith A., et al.
Publicado: (2022)