Cargando…
Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications
The ability of some nanoparticles to mimic the activity of certain enzymes paves the way for several attractive biomedical applications which bolster the already impressive arsenal of nanomaterials to combat deadly diseases. A key feature of such ‘nanozymes’ is the duplication of activities of enzym...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219663/ https://www.ncbi.nlm.nih.gov/pubmed/35740402 http://dx.doi.org/10.3390/biomedicines10061378 |
_version_ | 1784732168924168192 |
---|---|
author | Chakraborty, Nayanika Gandhi, Sona Verma, Rajni Roy, Indrajit |
author_facet | Chakraborty, Nayanika Gandhi, Sona Verma, Rajni Roy, Indrajit |
author_sort | Chakraborty, Nayanika |
collection | PubMed |
description | The ability of some nanoparticles to mimic the activity of certain enzymes paves the way for several attractive biomedical applications which bolster the already impressive arsenal of nanomaterials to combat deadly diseases. A key feature of such ‘nanozymes’ is the duplication of activities of enzymes or classes of enzymes, such as catalase, superoxide dismutase, oxidase, and peroxidase which are known to modulate the oxidative balance of treated cells for facilitating a particular biological process such as cellular apoptosis. Several nanoparticles that include those of metals, metal oxides/sulfides, metal–organic frameworks, carbon-based materials, etc., have shown the ability to behave as one or more of such enzymes. As compared to natural enzymes, these artificial nanozymes are safer, less expensive, and more stable. Moreover, their catalytic activity can be tuned by changing their size, shape, surface properties, etc. In addition, they can also be engineered to demonstrate additional features, such as photoactivated hyperthermia, or be loaded with active agents for multimodal action. Several researchers have explored the nanozyme-mediated oxidative modulation for therapeutic purposes, often in combination with other diagnostic and/or therapeutic modalities, using a single probe. It has been observed that such synergistic action can effectively by-pass the various defense mechanisms adapted by rogue cells such as hypoxia, evasion of immuno-recognition, drug-rejection, etc. The emerging prospects of using several such nanoparticle platforms for the treatment of bacterial infections/diseases and cancer, along with various related challenges and opportunities, are discussed in this review. |
format | Online Article Text |
id | pubmed-9219663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92196632022-06-24 Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications Chakraborty, Nayanika Gandhi, Sona Verma, Rajni Roy, Indrajit Biomedicines Review The ability of some nanoparticles to mimic the activity of certain enzymes paves the way for several attractive biomedical applications which bolster the already impressive arsenal of nanomaterials to combat deadly diseases. A key feature of such ‘nanozymes’ is the duplication of activities of enzymes or classes of enzymes, such as catalase, superoxide dismutase, oxidase, and peroxidase which are known to modulate the oxidative balance of treated cells for facilitating a particular biological process such as cellular apoptosis. Several nanoparticles that include those of metals, metal oxides/sulfides, metal–organic frameworks, carbon-based materials, etc., have shown the ability to behave as one or more of such enzymes. As compared to natural enzymes, these artificial nanozymes are safer, less expensive, and more stable. Moreover, their catalytic activity can be tuned by changing their size, shape, surface properties, etc. In addition, they can also be engineered to demonstrate additional features, such as photoactivated hyperthermia, or be loaded with active agents for multimodal action. Several researchers have explored the nanozyme-mediated oxidative modulation for therapeutic purposes, often in combination with other diagnostic and/or therapeutic modalities, using a single probe. It has been observed that such synergistic action can effectively by-pass the various defense mechanisms adapted by rogue cells such as hypoxia, evasion of immuno-recognition, drug-rejection, etc. The emerging prospects of using several such nanoparticle platforms for the treatment of bacterial infections/diseases and cancer, along with various related challenges and opportunities, are discussed in this review. MDPI 2022-06-10 /pmc/articles/PMC9219663/ /pubmed/35740402 http://dx.doi.org/10.3390/biomedicines10061378 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Chakraborty, Nayanika Gandhi, Sona Verma, Rajni Roy, Indrajit Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications |
title | Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications |
title_full | Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications |
title_fullStr | Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications |
title_full_unstemmed | Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications |
title_short | Emerging Prospects of Nanozymes for Antibacterial and Anticancer Applications |
title_sort | emerging prospects of nanozymes for antibacterial and anticancer applications |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219663/ https://www.ncbi.nlm.nih.gov/pubmed/35740402 http://dx.doi.org/10.3390/biomedicines10061378 |
work_keys_str_mv | AT chakrabortynayanika emergingprospectsofnanozymesforantibacterialandanticancerapplications AT gandhisona emergingprospectsofnanozymesforantibacterialandanticancerapplications AT vermarajni emergingprospectsofnanozymesforantibacterialandanticancerapplications AT royindrajit emergingprospectsofnanozymesforantibacterialandanticancerapplications |