Cargando…

Molecular detection of omicron SARS-CoV-2 variant is achieved by RT-LAMP despite genomic mutations

BACKGROUND: Severe acute respiratory syndrome coronavirus (SARS-CoV-2) omicron variant was first detected in South Africa in November 2021. Since then, the number of cases due to this variant increases enormously every day in different parts of the world. Mutations within omicron genome may impair t...

Descripción completa

Detalles Bibliográficos
Autores principales: Almeida, Letícia Trindade, Gonçalves, Amanda Bonoto, Franco-Luiz, Ana Paula Moreira, Silva, Thais Bárbara de Souza, Alves, Pedro Augusto, do Monte-Neto, Rubens Lima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Instituto Oswaldo Cruz, Ministério da Saúde 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219828/
https://www.ncbi.nlm.nih.gov/pubmed/35766650
http://dx.doi.org/10.1590/0074-02760220050
Descripción
Sumario:BACKGROUND: Severe acute respiratory syndrome coronavirus (SARS-CoV-2) omicron variant was first detected in South Africa in November 2021. Since then, the number of cases due to this variant increases enormously every day in different parts of the world. Mutations within omicron genome may impair the molecular detection resulting in false negative results during Coronavirus disease 19 (COVID-19) diagnosis. OBJECTIVES: To verify if colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) targeting N and E genes would work efficiently to detect omicron SARS-CoV-2 variant and its sub-lineages. METHODS: SARS-CoV-2 reverse transcription quantitative polymerase chain reaction (RT-qPCR) positive samples were sequenced by next generation DNA sequencing. The consensus sequences generated were submitted to Pangolin tool for SARS-CoV-2 lineage identification. RT-LAMP reactions were performed at 65ºC/30 min targeting N and E. FINDINGS: SARS-CoV-2 omicron can be detected by RT-LAMP targeting N and E genes despite the genomic mutation of this more transmissible lineage. Omicron SARS-CoV-2 sub-lineages were tested and efficiently detected by RT-LAMP. We demonstrated that this test is very sensitive in detecting omicron variant, with LoD as low as 0.4 copies/µL. MAIN CONCLUSIONS: Molecular detection of omicron SARS-CoV-2 variant and its sub-lineages can be achieved by RT-LAMP despite the genomic mutations as a very sensitive surveillance tool for COVID-19 molecular diagnosis.