Cargando…
Citrus limonL.-Derived Nanovesicles Show an Inhibitory Effect on Cell Growth in p53-Inactivated Colorectal Cancer Cells via the Macropinocytosis Pathway
Edible plant-derived nanovesicles have been explored as effective materials for preventing colorectal cancer (CRC) incidence, dependent on gene status, as a K-Ras-activating mutation via the macropinocytosis pathway. Approximately 70% of CRC harbors the p53 mutation, which is strongly associated wit...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219868/ https://www.ncbi.nlm.nih.gov/pubmed/35740377 http://dx.doi.org/10.3390/biomedicines10061352 |
Sumario: | Edible plant-derived nanovesicles have been explored as effective materials for preventing colorectal cancer (CRC) incidence, dependent on gene status, as a K-Ras-activating mutation via the macropinocytosis pathway. Approximately 70% of CRC harbors the p53 mutation, which is strongly associated with a poor prognosis for CRC. However, it has not been revealed whether p53 inactivation activates the macropinocytosis pathway or not. In this study, we investigated parental cells, wild-type or null for p53 treated with Citrus limon L.-derived nanovesicles, as potential materials for CRC prevention. Using ultracentrifugation, we obtained C. limon L.-derived nanovesicles, the diameters of which were approximately 100 nm, similar to that of the exosomes derived from mammalian cells. C. limon L.-derived nanovesicles showed inhibitory effects on cell growth in not p53-wild, but also in p53-inactivated CRC cells. Furthermore, we revealed that the macropinocytosis pathway is activated by p53 inactivation and C. limon L.-derived nanovesicles were up taken via the macropinocytosis pathway. Notably, although C. limon L.-derived nanovesicles contained citrate, the inhibitory effects of citrate were not dependent on the p53 status. We thus provide a novel mechanism for the growth inhibition of C. limon L.-derived nanovesicles via macropinocytosis and expect to develop a functional food product containing them for preventing p53-inactivation CRC incidence. |
---|