Cargando…
Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom
SIMPLE SUMMARY: Snake venoms are rich in molecules acting on different biological systems, and they are responsible for the complications following snake bite envenoming. These bioactive molecules are of interest in pharmaceutical industries as templates for drug design. Different biological activit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219918/ https://www.ncbi.nlm.nih.gov/pubmed/35741410 http://dx.doi.org/10.3390/biology11060888 |
Sumario: | SIMPLE SUMMARY: Snake venoms are rich in molecules acting on different biological systems, and they are responsible for the complications following snake bite envenoming. These bioactive molecules are of interest in pharmaceutical industries as templates for drug design. Different biological activities of Montivipera bornmuelleri snake venom have been already studied; however, the venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Herein, we show that this venom induces toxicity on the nervous system and disrupts the cardiovascular system, highlighting a broad spectrum of biological activities. ABSTRACT: The complications following snake bite envenoming are due to the venom’s biological activities, which can act on different systems of the prey. These activities arise from the fact that snake venoms are rich in bioactive molecules, which are also of interest for designing drugs. The venom of Montivipera bornmuelleri, known as the Lebanon viper, has been shown to exert antibacterial, anticancer, and immunomodulatory effects. However, the venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Because zebrafish is a convenient model to study tissue alterations induced by toxic agents, we challenged it with the venom of Montivipera bornmuelleri. We show that this venom leads to developmental toxicity but not teratogenicity in zebrafish embryos. The venom also induces neurotoxic effects and disrupts the zebrafish cardiovascular system, leading to heartbeat rate reduction and hemorrhage. Our findings demonstrate the potential neurotoxicity and cardiotoxicity of M. bornmuelleri’s venom, suggesting a multitarget strategy during envenomation. |
---|