Cargando…
Discovering Common miRNA Signatures Underlying Female-Specific Cancers via a Machine Learning Approach Driven by the Cancer Hallmark ERBB
Big data processing, using omics data integration and machine learning (ML) methods, drive efforts to discover diagnostic and prognostic biomarkers for clinical decision making. Previously, we used the TCGA database for gene expression profiling of breast, ovary, and endometrial cancers, and identif...
Autores principales: | Pane, Katia, Zanfardino, Mario, Grimaldi, Anna Maria, Baldassarre, Gustavo, Salvatore, Marco, Incoronato, Mariarosaria, Franzese, Monica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219956/ https://www.ncbi.nlm.nih.gov/pubmed/35740327 http://dx.doi.org/10.3390/biomedicines10061306 |
Ejemplares similares
-
An Integrative Computational Approach Based on Expression Similarity Signatures to Identify Protein–Protein Interaction Networks in Female-Specific Cancers
por: Pane, Katia, et al.
Publicado: (2020) -
miRNA-Based Therapeutics in Breast Cancer: A Systematic Review
por: Grimaldi, Anna Maria, et al.
Publicado: (2021) -
TCGA-TCIA Impact on Radiogenomics Cancer Research: A Systematic Review
por: Zanfardino, Mario, et al.
Publicado: (2019) -
Clinical Translatability of “Identified” Circulating miRNAs for Diagnosing Breast Cancer: Overview and Update
por: Grimaldi, Anna Maria, et al.
Publicado: (2019) -
The New Paradigm of Network Medicine to Analyze Breast Cancer Phenotypes
por: Grimaldi, Anna Maria, et al.
Publicado: (2020)