Cargando…

The Influence of a Shoe’s Heel-Toe Drop on Gait Parameters during the Third Trimester of Pregnancy

Background: Changes in physical shape and body mass during pregnancy may increase the risk of walking falls. Shoes can protect and enhance the inherent function of the foot, helping to maintain dynamic and static stability. Methods: Sixteen women during the third trimester of pregnancy participated...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xin, Lu, Zhenghui, Sun, Dong, Xuan, Rongrong, Zheng, Zhiyi, Gu, Yaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220068/
https://www.ncbi.nlm.nih.gov/pubmed/35735484
http://dx.doi.org/10.3390/bioengineering9060241
Descripción
Sumario:Background: Changes in physical shape and body mass during pregnancy may increase the risk of walking falls. Shoes can protect and enhance the inherent function of the foot, helping to maintain dynamic and static stability. Methods: Sixteen women during the third trimester of pregnancy participated in this study to investigate the effect of negative heel shoes (NHS), positive heel shoes (PHS), and normal shoes (NS) on spatiotemporal parameters, ground reaction force (GRF), and stability. Differences in spatiotemporal parameter, GRF, and center of pressure (COP) between footwear conditions were examined using Statistical Parametric Mapping (SPM) and repeated measures analyses of variance (ANOVA). Results: The walking speed and step length increased with the increase in heel-toe drop. The anterior-posterior (AP)-COP in NHS decreased significantly (p < 0.001). When wearing NHS, peak posterior angles were significantly lower than NS and PHS (p < 0.05). Conclusions: The results show that changing the heel-toe drop can significantly affect the gait pattern of pregnant women. Understanding the gait patterns of pregnant women wearing shoes with different heel-toe drops is very important for reducing the risk of injury and equipment design.